

Monitoraggio del carbonio nei suoli agricoli italiani

Roberta Farina, Rosa Francaviglia, Anna Benedetti

Consiglio per la Ricerca e la sperimentazione in Agricoltura
Centro di Ricerca per lo studio delle Relazioni tra Pianta e Suolo, CRA-RPS

Roma 13 marzo 2014

Progetto MO.NA.CO. <u>MO</u>nitoraggio <u>NA</u>zionale della <u>CO</u>ndizionalità

Programma Rete Rurale Nazionale 2007-2013 Finanziamento fondi MiPAAF e FEASR

Nel Progetto si esegue il monitoraggio del carbonio organico del suolo in aziende sperimentali del CRA per valutare l'efficacia dei seguenti standard di condizionalità:

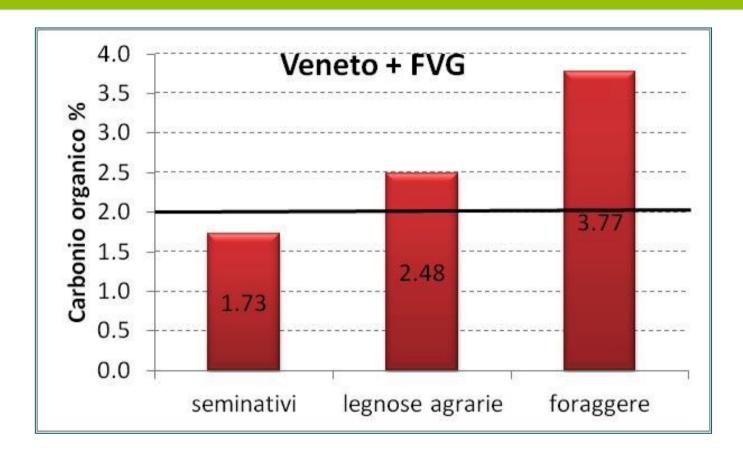
- •2.1 gestione stoppie/residui colturali (WP5)
- •2.2 Avvicendamento biennale (WP6)
- •4.1 Protezione del pascolo permanente (WP9)
- •4.6 Carico di bestiame (WP10)

Il monitoraggio di ogni standard prevede il confronto tra:

- •trattamento fattuale, in cui si applica lo standard
- •trattamento controfattuale, in cui lo standard non si applica
- •Ulteriori parametri determinati: TEC, HA+HF, fertilità biologica (biomassa microbica, respirazione ecc.), parametri produttivi

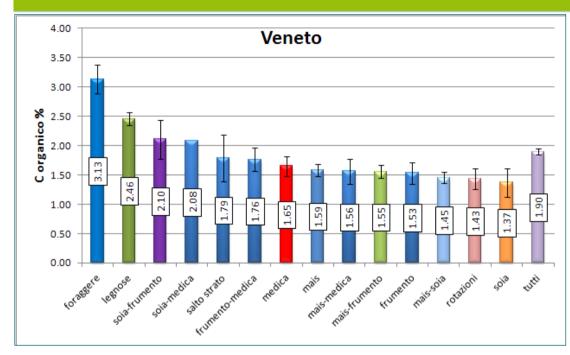
Progetto RAAM Relazioni Agricoltura-AMbiente

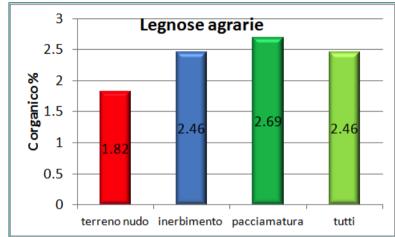
Finanziamento fondi MiPAAF

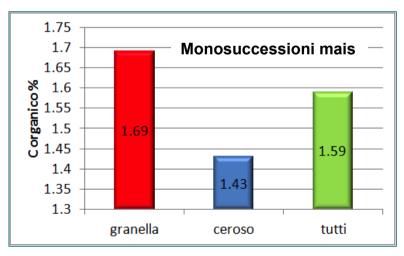

Su richiesta dell' Ufficio DISR III del Ministero, nel 2011-2012 è stato determinato il C organico del suolo su 1160 punti di campionamento, nelle aree agricole di pianura e collina di Veneto e Friuli Venezia Giulia, in base alla serie storica AGRIT dell' uso del suolo dal 2008-2010.

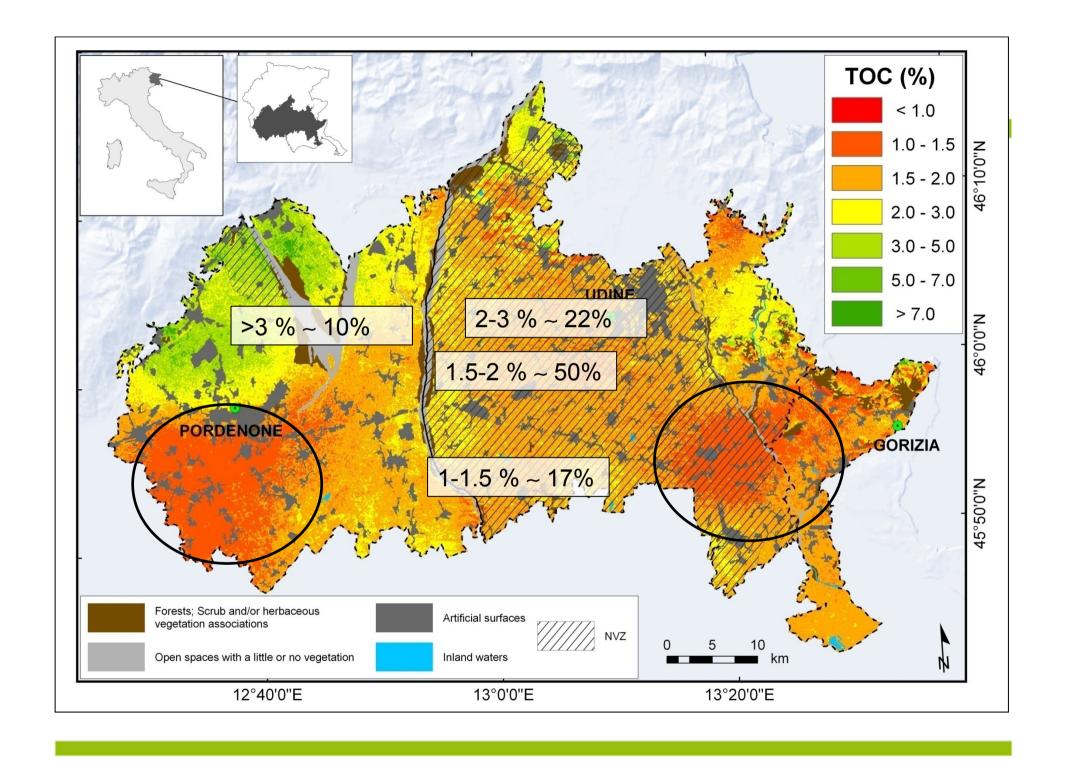
I campioni sono stati suddivisi in tre strati informativi corrispondenti alle classi di SAU

- •seminativi
- •legnose agrarie
- •foraggere permanenti





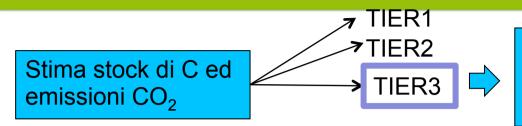

Valore medio (2.03%), seminativi -0.30 %, legnose agrarie + 0.45 %, foraggere +1.74 %


Seminativi (1.73%), legnose agrarie +0.75%, foraggere +2.04%

Progetto CIS

Il progetto è stato finanziato dal Mipaaf, DISR III, con DM 247/2013. L'obiettivo principale del progetto è stata la messa a punto di una metodologia per stimare le dotazioni di carbonio organico dei suoli agricoli italiani, la loro suscettività alla perdita o all'accumulo in funzione dei sistemi colturali, delle caratteristiche pedoclimatiche, nonché dei futuri scenari legati all'evoluzione della Politica Agricola Comunitaria e della politica sul clima.

Obiettivi secondari:


- •Armonizzazione delle banche dati: CRA_suolo, JRC-clima, MiPAAF_AGRIT (successioni colturali), ISTAT (rese colturali).
- Ingegnerizzazione modello RothC.
- Validazione del modello RothC per la Provincia di Foggia.

Partner: INEA, CRA, CURSA

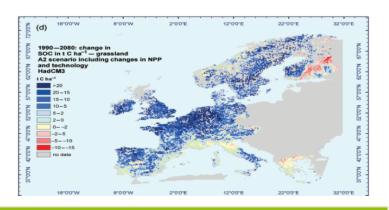
PROGETTO CIS- C in Italian Soils

uso di modelli ecosistemici e di processo per stimare lo stock di C e le emissioni di CO2 dai suoli

Banca dati dei SUOLI (C, tessitura, dati idrologici)

Dati climatici

Uso del suolo/cambiamenti di uso del suolo


Dati produttivi (NPP)

Modello RothC ingegnerizzato

Metodologie geostatistiche

- 1) stima dello stock di C in base al tipo di suolo, di clima, di coltura
- 2) Mappe di variazione del C in risposta a perturbazioni dal BAU
- 3) rendere tutti dati coevi (uso in modo iterativo)
- 4) stimare il contenuto di C anche nei punti/aree dove questo non è stato misurato

II modello RothC

Punti di forza

- •Solidità scientifica (oltre 3000 citazioni biblio).
- •Accuratezza delle simulazioni (usato in molti Paesi per la stima di C stocks).
- Consente di usare anche dati non coevi.
- •Possibilità di spazializzazione a vari livelli di dettaglio.
- Numero ridotto di parametri richiesti.

Punti di debolezza

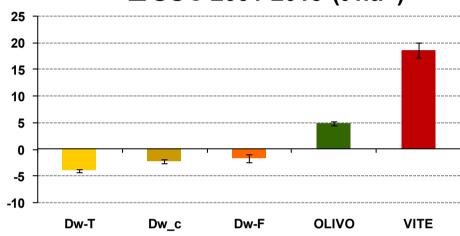
- •Input e output puntuali.
- •Difficoltà nel reperimento dei dati colturali, dei parametri pedologici nel tempo
- •Disomogeneità dei dati e completezza del database.
- •Richiede professionalità medio-alta per la messa a punto dei data base, per la stima degli input colturali, per la spazializzazione dei dati.
- •Non simula ancora l'effetto delle lavorazioni del terreno.

Armonizzazione delle banche dati

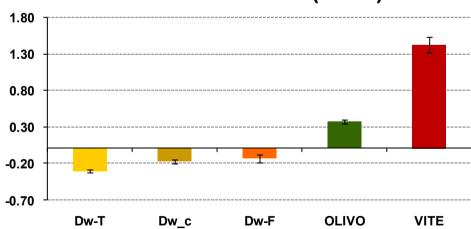
- **Dati suolo (CRA)**: Tessitura, Densità apparente, Corg. (%), provenienti da profili e pozzetti (Provincia di Foggia: anno campionamento 1994, 2001; n. osservazioni 290). Corg (t ha-1) 0-30 cm di profondità.
- Dati climatici (JRC): Temperatura, Precipitazioni, Evapotraspirazione.
- Successioni colturali (MiPAAF_AGRIT): tipo di coltura, periodo 2001-2013 (Provincia di Foggia: n. osservazioni 2484).
- Resa colture (ISTAT): periodo 2001-2013
- RICA (INEA): tecniche colturali, rotazioni e rese

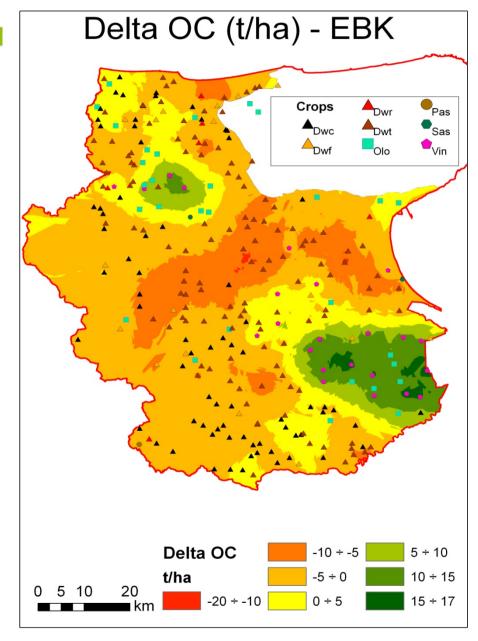
Ingegnerizzazione del modello RothC

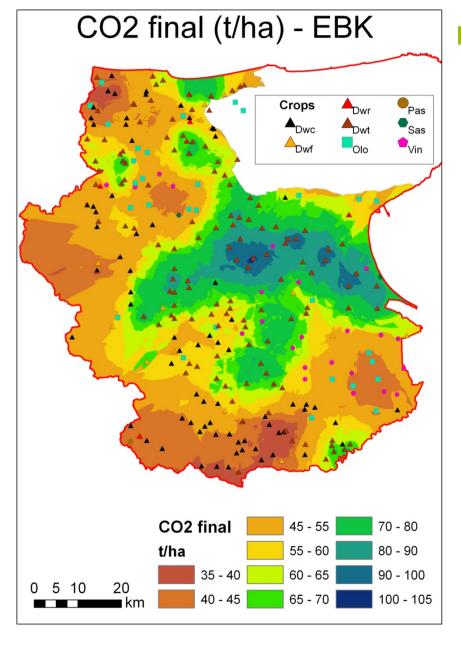
- •Automatizzazione delle procedure di lettura dei dati per far girare il modello su tutti i punti considerati prima all'equilibrio (10000 anni) e poi la simulazione vera e proprio considerando l'arco temporale dei dati AGRIT (2001-2013).
 - 1. Lettura dei dati e preparazione dei file di input per il modello all' equilibrio (1 t ha-1).
 - 2. Ricalcolo del valore di SOC all'equilibrio per l'effettivo contenuto di ogni punto e preparazione dei file di land management per ogni anno considerato.
 - 3. Preparazione di file di setup per la simulazione di ogni punto.
 - 4. Output automatico per la rappresentazione su GIS e spazializzazione dei dati.



Risultati: provincia di Foggia


Area pilota	Tipo di Suolo		Colt.	Sistema	Delta SOC	Emissioni
	Tessitura	SOC_eq		colturale	(2001-2013)	CO ₂
Provincia di Foggia	Argilloso	52.47	Frum	Dwc (56)	-2.35	43.69
	Franco	50.58	Frum	Dwc (17)	-2.68	44.95
	Sabbioso	40.27	Frum	Dwc (2)	-1.49	41.19
	Argilloso	51.39	Frum	Dwf (12)	-0.86	49.84
	Franco	61.12	Frum	Dwf (5)	-4.16	53.27
	Argilloso	47.48	Frum	Dwt (78)	-3.23	68.88
	Franco	47,34	Frum	Dwt (46)	-5.00	80.53
	Sabbioso	55.78	Frum	Dwt (5)	-7.26	89.63
	Argilloso	37.37	Olivo	Oliveto (24)	4.82	40.12
	Franco	32.97	Olivo	Oliveto (11)	4.88	39.53
	Argilloso	18.55	Vite	Vigneto (16)	18.69	53.84
	Franco	16.80	Vite	Vigneto (5)	18.02	54.92
	Sabbioso	9.85	Vite	Vigneto (2)	18.39	51.59


Δ SOC 2001-2013 (t ha⁻¹)



Δ SOC annuo (t ha⁻¹)

SOC tra indicatori di contesto e di efficacia

- Politiche agricole ed ambientali sempre più spesso identificano il raggiungimento di target comuni lasciando l'individuazione dei percorsi più consoni a differenti tipologie di policy maker.
- La richiesta di aggiornamento delle metodologie di contabilizzazione delle emissioni dei suoli agricoli e dei pascoli nell'ambito dell'attuazione del PK in ambito europeo e la recente approvazione del Reg. 1305/2013, rappresentano un'opportunità per armonizzare oltre che gli obiettivi anche il monitoraggio dell'efficacia degli interventi.
- Nei nuovi PSR la modalità di calcolo dell' indicatore di contesto *Soil organic matter in arable land,* suggerita dall' EU, è (in Italia) demandata alle singole Regioni. Il progetto di armonizzazione delle banche dati e la metodologia di calcolo di CIS può essere utilizzata per **standardizzare gli output regionali** (territoriali).
- Attraverso il calcolo dei trade-off economici e ambientali in differenti condizioni territoriali e di gestione del suolo, la metodologia CIS consente di esprimere una valutazione circa la "bontà" delle **Buone pratiche** e di verificarne le potenzialità di diffusione attraverso analisi di scenario.

Questa presentazione è stata curata da Anna Benedetti, Rosa Francaviglia, Roberta Farina, Claudia Di Bene, Alessandro Marchetti e Gianluca Renzi del CRA-RPS Flavio Lupia, Guido Bonati, Orlando Cimino dell' INEA Emanuele Blasi dell' Università di Viterbo e Davide Marino del CURSA

Grazie per l'attenzione