Identification and measurement of landscape features (LPIS) in Wallonia (Belgium) (C21 and 032)

Département de l'Agriculture

Direction des Surfaces agricoles

- 1. Landscape features presentation
- 2. Current use: administrative control
- 3. Maintenance of the landscape features
- 4. LF layers and C21 and O32: expected issues

1- LANDSCAPE FEATURES PRESENTATION

Why setting up landscape features (LF) layers?

Implementation in the following contexts:

- The greening (EFA) (Art. 5 Reg. (CE) 640/2014)
- The AECM (Art. 28 Reg, (CE) 1305/2013)
- The cross-compliance (conditionnality) (TITRE VI Reg, (CE) 1306/2013)

LF layers	EFA	AECM
Isolated trees	X	Х
Hedges	X	X
Trees in line	X	X
Group of trees	X	X
Ponds	X	X
Ditches	X	
Schrubs Non LF layers		X
Field margins	X	

CREATION OF THE LF LAYERS

- Via public procurement (PIXELIUS firm)
- For two departments: Agriculture and Geomatic=> all LF in Wallonia (agricultural, urban and peri-urban)
- LF layer becoming an integral part of the LPIS
 - => Consolidation and updating from different sources: aerial orthophotos, applications, satellite imagery, DTM/DSM LIDAR, checks, rapid field visits ...

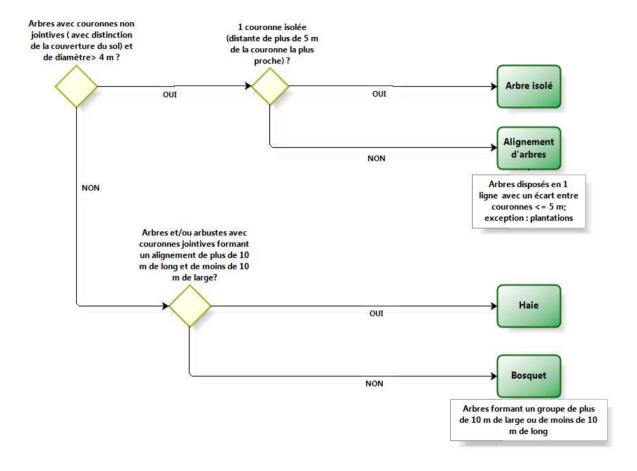
Overview of the layers

3 kinds of geometries:

- surfacic (groups of trees + ponds)
- linear (hedges + trees in line + ditches)
- isolated (isolated trees + bushes)

-Planimetric reference: aerial orthophotos

Definition LF: Illustration



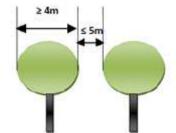
DICHOTOMIC KEY FOR WOODED FEATURES

Group of trees

Geometry

Definition:

At least 3 trees

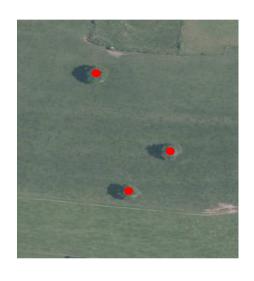

Maximum size: 30 ares

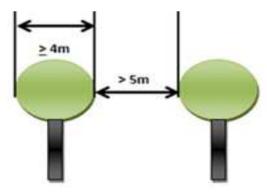
Trees in line

Geometry

Definition:

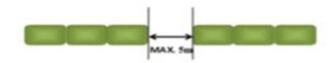
Crown diameter ≥ 4 m and space between crown limits ≤ 5 m.


Minimum length: 10m


Isolated tree

Geometry

Definition:


Crown diameter ≥ 4 m and space between crown limits > 5 m.

Hedge

Geometry

Definition:

Width ≤ 10 m (ground level) and length ≥ 10 m; gaps of 5 m max.

Hedge

Illustrative picture for the methodology used for the width estimation at the level of ground of a hedge by photo-interpretation:

Isolated schrub Geometry

Definition:

Space between crown limits > 5 m

Pond

Geometry

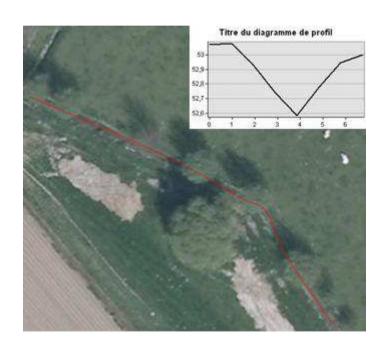
Definition:

Minimum size: 25 m²

of water

Maximum size: 1000

 m^2

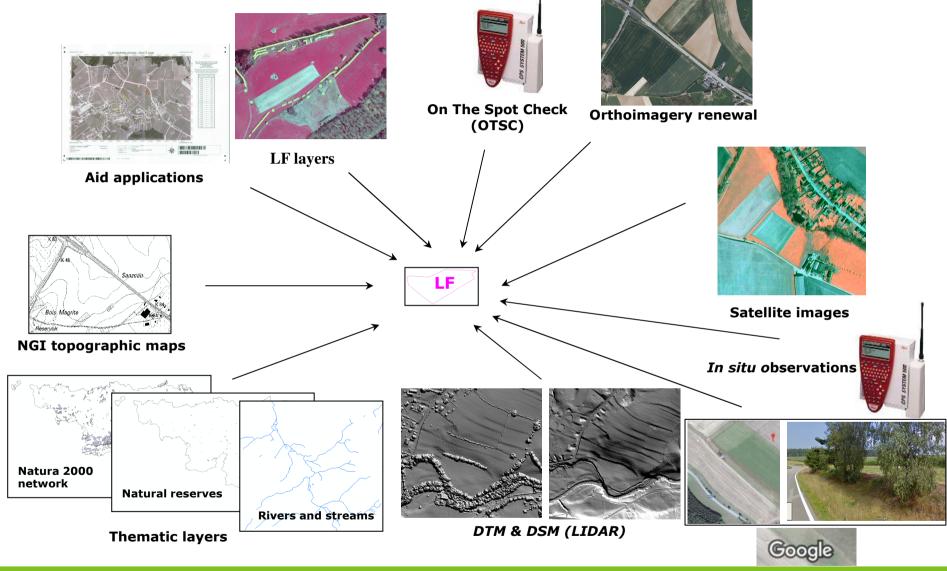


Ditches

Geometry

Definition: Width $\leq 2 \text{ m}$.

2- CURRENT USE: ADMINISTRATIVE CONTROL


Data used:

- Aid applications
- LF layers
- Aerial orthophotos
- LIDAR products: DTM et DSM
- Satellite images
- Google Map
- OTSC data and RFV data
- NGI

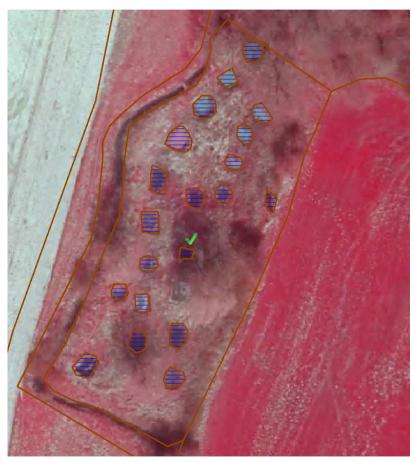
- 2015: creation of the layers
- Following years:
 - Update parcel by parcel, LF by LF
 - not automatic --> by hand

Encountered difficulties - farmers' mistakes

a) Example: Wood edges declared as hedges

Encountered difficulties - farmers' mistakes

- b) Example: Non-compliance with the definition (hedges
- >< group of trees)



Encountered difficulties - farmers' mistakes

c) Example: Non-compliance with the definition and badly positioned elements by the farmer

Encountered difficulties - farmers' mistakes

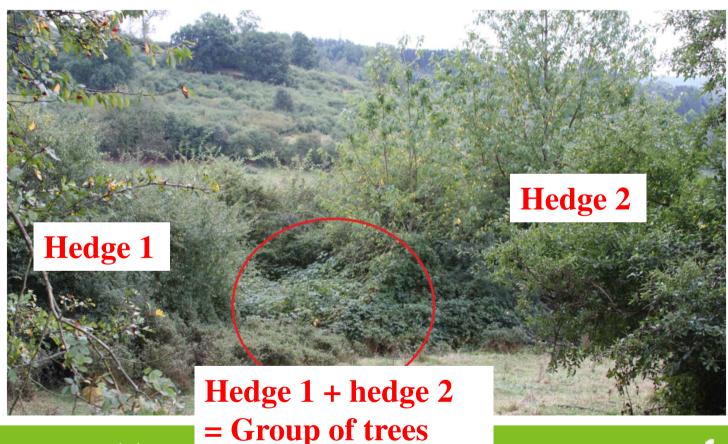
c) Example: Difficulties in implementing and understanding of definitions

Farmers aid application

Encountered difficulties - farmers' mistakes

c) Example: Difficulties in implementing and understanding of definitions

LF layers



3- MAINTENANCE OF THE LANDSCAPE FEATURES

Natural evolution of the LF => changing of categories => maintenance needed => administrative burden

4- LF LAYERS AND C21 AND O32: EXPECTED ISSUES

- Inconsistency between:
 - Indicator C21: SWOT
 - Total agricultural area (reference parcels)
 - Indicator O32: monitoring indicator
 - Hectares paid (agricultural parcels declared)
- → Compare C21 and O32 not relevant
 - →The evolution over time of these 2 indicators may be different according to the ratio of total declared area VS reference parcel area
 - → Expected communication issues with stakeholders

LF number

(in agricultural area + 1,75 m buffer

LF layers

	891 120	
Ditches	92 044	
Ponds (Area: <10 ares)	5 920	
Groups of trees (Area: >= 1 are et <10 ares)	3 592	
Hedges – Trees in line (length >= 10 m)	510 204	
Isolated trees	279 360	

MAIN DIFFICULTIES

 No automatisation of the LF evolution => huge administrative burden

Yearly cycle:

- submission of the LF to the farmers via the GSAA
- Reception of the aid applications from the farmers
- Processing of the changes (from the applications and from the field) BUT <u>new</u>
 <u>technologies are not appropriate to</u>
 <u>update the reference LF</u>

MAIN DIFFICULTIES

- Buffer strips: not included in the LF layers (measures issues: single line instead of polygon for the water course)
- Gaps in the hedges: changing over the time and not so easy to appreciate
- Issue conversion of lines and points in areas (using EFA conversion factors?)



MAIN DIFFICULTIES

• Issue of the adjacency: overestimation

Hedge relevant from the agricultural field or from the garden?

Is the ditch really from the agricultural field?

OTHER DIFFICULTIES: GAEC 9

LF data at farmer level

- how to attribute each LF to one individual farmer?
- →Different greening because all LF are considered for the GAEC 9 and no only declared LF

OTHER DIFFICULTIES: GAEC 9

Hypothesis:

- The producers should validate the reference layer at the level of each farm => administrative burden
 - But skills required at farmer level
 - Time-consuming consideration for payment agencies
 - Expert support needed, but too expensive: not adapted

