

FARMLAND BIRD INDEX E ANDAMENTI DI POPOLAZIONE DELLE SPECIE

2000-2015

Questo progetto è possibile grazie a impegno, professionalità e passione di molte persone che hanno collaborato con la Lipu e con il progetto MITO2000, a titolo professionale o di volontariato, nella raccolta e nell'elaborazione dei dati.

Coordinamento generale:

Claudio Celada, Patrizia Rossi e Laura Silva

ELIPU

Via Udine, 3A - 43122 Parma - Telefono 0521 273043 - E-mail: laura.silva@lipu.it

Gruppo di lavoro: Giovanni Albarella, Rossana Bigliardi, Marco Dinetti, Giorgia Gaibani, Marco Gustin, Federica Luoni, Andrea Mazza.

Hanno collaborato anche: Miranda Lupo, Silvia Maselli, Boris Pesci, Danilo Selvaggi.

Hanno collaborato:

Via Risorgimento, 9 -20060 Basiano (MI) - Telefono 02 95762250 Gruppo di lavoro Pteryx: Gianpiero Calvi.

Hanno inoltre collaborato Severino Vitulano ed Elisabetta de Carli.

Viale Angelo Fumagalli, 6 - 20143 Milano - Telefono 02 9285382

Gruppo di lavoro FaunaViva: Lia Buvoli, Paolo Bonazzi.

Hanno inoltre collaborato Lorenzo Fornasari e Jacopo Tonetti.

Via Garibaldi, 3 - Pratovecchio (AR) - Telefono 0575 529514

Gruppo di lavoro D.R.E.Am. Italia: Guido Tellini Florenzano, Simonetta Cutini, Tommaso Campedelli, Guglielmo Londi.

Coordinatori regionali e rilevatori che hanno collaborato al progetto finanziato dal Ministero delle politiche agricole alimentari e forestali nell'ambito delle attività della Rete Rurale Nazionale dal 2009 al 2015:

Coordinatore: De Lisio Lorenzo (2009-2015)

Rilevatori: Carafa Marco, Corso Andrea, De Lisio Lorenzo, De Rosa Davide, Fracasso Giancarlo

Per la citazione di questo documento si raccomanda: Rete Rurale Nazionale & Lipu (2019). Molise – Farmland Bird Index e andamenti di popolazione delle specie 2000-2015.

INDICE

1	DE	SCRIZIONE DELLA BANCA DATI REGIONALE 2000-2015	4
2	ME	TODI	7
	2.1	TECNICA DI RILEVAMENTO	7
	2.2	COMPILAZIONE DELLA SCHEDA DI RILEVAMENTO	7
	2.3	DISTRIBUZIONE DEI PUNTI DI ASCOLTO	7
	2.4	ARCHIVIAZIONE E GESTIONE DEI DATI	7
	2.5	SELEZIONE DEI DATI PER L'ANALISI	8
	2.6	METODI DI CALCOLO DEI TREND DELLE SPECIE	8
	2.7	METODI DI CALCOLO DELL'INDICATORE AGGREGATO	10
3	IL	FARMLAND BIRD INDEX REGIONALE NEL PERIODO 2000-2015	12
	3.1	IL FARMLAND BIRD INDEX	12
	3.2	ANDAMENTI DI POPOLAZIONE DELLE SPECIE AGRICOLE	14
	3.3	CONSIDERAZIONI SUI RISULTATI OTTENUTI	15
	3.4	APPENDICE A: CONTRIBUTI DELLE SINGOLE SPECIE AL FARMLAND BIRD INDEX	17
4	BI	BLIOGRAFIA	19
5	RT	NGR A 7 T A M F N T T	20

1 DESCRIZIONE DELLA BANCA DATI REGIONALE 2000-2015

La banca dati relativa al territorio regionale consta di 11.588 record di Uccelli, rilevati in 1.097 punti d'ascolto realizzati tra il 2000 e il 2015 e distribuiti in 26 particelle UTM 10x10 km riferiti al programma randomizzato¹. Nel 2015 sono stati realizzati 134 punti d'ascolto distribuiti in 9 particelle.

Il numero delle particelle (Figura 1.1) e dei punti rilevati messi a disposizione dal progetto MITO2000 - avviato nel 2000 grazie ad un contributo iniziale del Ministero dell'Ambiente e della Tutela del Territorio e del Mare e proseguito dal 2001 fino al 2008 su base esclusivamente volontaristica – presenta fluttuazioni molto marcate con anni di totale assenza di dati (2003, 2005, 2008).

In seguito, a partire dal 2009, il progetto finanziato e sostenuto dal Ministero delle politiche agricole, alimentari e forestali - Mipaaf, nell'ambito delle attività della Rete Rurale Nazionale – RRN, ha integrato l'archivio dati disponibile con un numero di particelle che è cresciuto gradualmente fino ad attestarsi attorno alle 8 unità dal 2011.

Nel corso dei rilievi del 2015 sono stati effettuati 134 punti di ascolto durante i quali sono stati registrati 1.556 record di osservazioni di uccelli.

Per maggiori dettagli sul contenuto della Banca Dati si veda la Sezione "Farmland Bird Index nazionale e andamenti di popolazione delle specie in Italia nel periodo 2000-2015" scaricabile alla pagina www.reterurale.it/farmlandbirdindex.

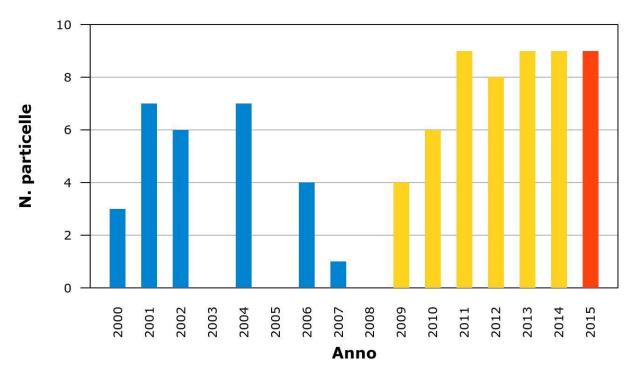


Figura 1.1: Numero delle particelle monitorate ogni anno: in blu i dati disponibili nella banca dati del progetto MITO2000, in giallo i dati raccolti con questo progetto grazie al sostegno della RRN, in rosso l'ultima stagione.

Per la definizione degli andamenti di popolazione delle specie di ambiente agricolo vengono utilizzati i dati riferiti alle particelle e ai punti d'ascolto in esse inclusi, ripetuti almeno due volte nel periodo 2000-2015 (vedi paragrafo 2.5). Il set di dati utilizzati nelle analisi è pertanto

Il progetto MITO2000 prevedeva originariamente un piano di campionamento randomizzato che utilizza come unità di campionamento le particelle 10x10 km ed un piano specifico per i rilievi nelle ZPS (Zone di Protezione Speciale) e le ZIO (Zone di Interesse Ornitologico); i rilievi in ZPS e ZIO sono cessati, con l'eccezione del Friuli Venezia Giulia, dopo i primi anni di proqetto e non sono dunque attualmente utilizzati ai fini del calcolo dei trend.

relativo alle 23 particelle UTM 10x10 km illustrate nella Figura 1.2, da cui si evince che 3 particelle presentano una serie storica composta da almeno 8 anni di monitoraggio effettuato tra il 2000 e il 2015.

A partire dal 2009 è stato possibile accrescere i dati a disposizione, senza censire particelle nuove, ma dando la priorità al censimento di particelle che in passato erano state visitate soltanto una volta. In questo modo, a parità di sforzo di campionamento, aumenta il numero delle particelle utilizzabili, con conseguente aumento del numero di dati disponibili per il calcolo degli indicatori, valorizzando così i dati presenti nell'archivio del progetto raccolti prima del 2009.

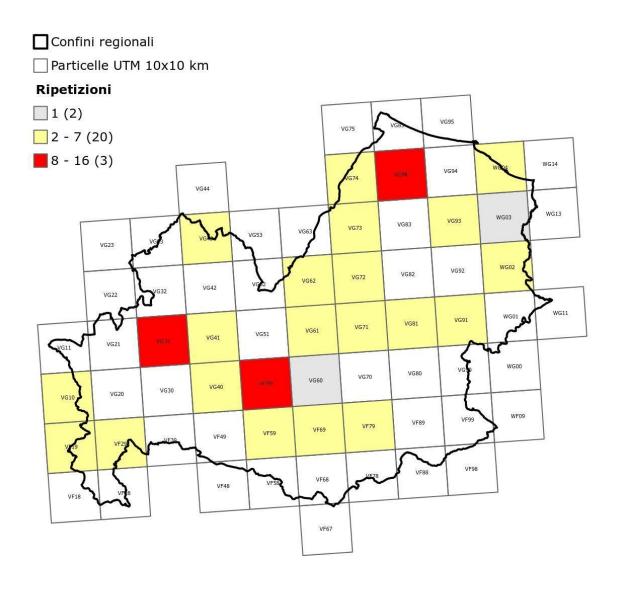


Figura 1.2: Particelle UTM 10x10 km utilizzate nel calcolo degli andamenti delle specie tipiche di ambiente agricolo e dell'andamento del Farmland Bird Index: le particelle sono distinte in base al numero di ripetizioni annuali (in rosso le particelle visitate almeno 8 anni, in giallo quelle visitate un numero inferiore di anni). In grigio sono riportate le particelle con almeno sette stazioni censite solamente una volta nel periodo 2000-2015, dunque ancora non utilizzate nel calcolo degli andamenti.

Le analisi hanno preso in considerazione complessivamente 891 e 823 punti d'ascolto, utilizzati rispettivamente nelle analisi per particelle e per punti; la Tabella 1 mostra i punti utilizzati suddivisi per anno nel periodo considerato.

La metodologia di analisi standard prevede l'accorpamento dei dati raccolti all'interno di una particella. In aggiunta è stata introdotta l'analisi basata sui singoli punti di ascolto per le specie di cui non è stato possibile arrivare alla definizione di un andamento certo con il metodo standard. Nell'analisi per punti, al fine di aumentare la precisione delle stime, sono stati utilizzati, all'interno delle particelle selezionate con la procedura standard, i dati relativi alle sole stazioni ripetute. Per questo motivo il numero complessivo di punti d'ascolto utilizzati con le due procedure è leggermente differente.

Tabella 1: Numero di rilevamenti per anno (punti d'ascolto) considerati nelle analisi degli andamenti delle specie tipiche degli ambienti agricoli.

	Numero punti di ascolto				
Anno	Analisi per particelle	Analisi per punti			
2000	41	32			
2001	85	75			
2002	57	53			
2003	0	0			
2004	52	48			
2005	0	0			
2006	32	30			
2007	15	14			
2008	0	0			
2009	43	36			
2010	67	67			
2011	94	76			
2012	104	98			
2013	108	102			
2014	95	94			
2015	98	98			

2 METODI

In questo capitolo si riassumono i metodi utilizzati nel corso di tutta la procedura che consente di arrivare al calcolo del *Farmland Bird Index* a livello regionale, dalla raccolta di dati sul campo alla fase di elaborazione statistica.

Per una versione maggiormente dettagliata dell'intera metodologia si rimanda alla sezione "Metodologie e database" scaricabile alla pagina www.reterurale.it/farmlandbirdindex.

2.1 TECNICA DI RILEVAMENTO

La tecnica di rilevamento prescelta è quella dei punti di ascolto senza limiti di distanza della durata di 10 minuti (Blondel *et al.* 1981; Fornasari *et al.* 2002) effettuati una sola volta nel corso di ogni stagione riproduttiva. I campionamenti sono stati eseguiti indicativamente in maggio e giugno, periodo durante il quale la totalità delle specie nidificanti è presente presso le aree di rilievo. I rilievi hanno avuto inizio poco dopo l'alba e sono stati condotti con condizioni meteorologiche favorevoli (assenza di vento forte o precipitazioni intense).

2.2 COMPILAZIONE DELLA SCHEDA DI RILEVAMENTO

Per ogni stazione di campionamento i rilevatori sono tenuti a riportare su un'apposita scheda tutti gli individui visti o sentiti, separando gli stessi a seconda che l'osservazione sia avvenuta entro o oltre un raggio di 100 m dall'osservatore. Le osservazioni vengono corredate di codici descrittivi del comportamento animale (individuo in canto, individuo in attività riproduttiva, ecc.).

Oltre ai dati ornitologici i rilevatori sono tenuti a riportare le caratteristiche ambientali entro un raggio di 100 m dall'osservatore nonché informazioni di carattere generale relative al rilevamento (ad esempio codice identificativo, data e orario, condizioni meteorologiche).

Dal 2010 ogni stazione di campionamento viene sistematicamente georeferenziata tramite GPS (tale pratica non era invece universalmente adottata negli anni precedenti).

2.3 DISTRIBUZIONE DEI PUNTI DI ASCOLTO

La selezione delle particelle da campionare, e delle relative stazioni d'ascolto, è svolta dalla Lipu che predispone il piano di campionamento a livello nazionale e regionale e fornisce indicazioni puntuali ai rilevatori. Le particelle da campionare sono selezionate principalmente in base a due criteri: 1) devono essere state visitate almeno una volta prima della stagione riproduttiva imminente; 2) devono preferibilmente contenere una percentuale significativa di ambienti agricoli.

L'esplorazione di ciascuna particella UTM 10x10 km comporta generalmente l'esecuzione di 15 punti d'ascolto da eseguirsi in altrettanti quadrati di 1 km di lato, a loro volta individuati in base a una procedura di randomizzazione. La stazione d'ascolto di norma viene ripetuta esattamente nello stesso punto (le coordinate archiviate nel database vengono aggiornate e validate ogni anno) e possibilmente dallo stesso rilevatore che ha eseguito il censimento l'anno precedente.

Attualmente la scelta delle stazioni da coprire viene fatta in maniera prioritaria su quelle stazioni che negli anni precedenti sono state visitate il maggior numero di volte.

2.4 ARCHIVIAZIONE E GESTIONE DEI DATI

L'archiviazione dei dati avviene tramite un software appositamente realizzato denominato AEGITHALOS.

I dati sono archiviati in un database (DB) relazionale realizzato utilizzando la tecnologia PostgreSQL e dotato di estensione spaziale PostGIS.

Il DB di progetto viene annualmente sottoposto ad una laboriosa procedura di validazione dei dati che può consentire l'individuazione ed eventualmente la correzione di diverse tipologie di errore, sia di tipo geografico (ad esempio posizione del punto d'ascolto, o codice identificativo della stazione errati, ecc.), sia relative alle specie rilevate (denominazione specie errata, specie fuori areale, ecc.).

2.5 SELEZIONE DEI DATI PER L'ANALISI

Ai fini del calcolo degli andamenti di popolazione delle specie ornitiche indicatrici degli ambienti agricoli vengono considerati solo i dati provenienti dal programma randomizzato: ciò garantisce la produzione di risultati rappresentativi dell'intero territorio di interesse. Nella banca dati del progetto affluiscono anche dati provenienti da programmi di monitoraggio regionali indipendenti, purché il metodo di raccolta dei dati sia conforme a quello utilizzato nell'ambito del presente progetto.

Dai dati selezionati sono eliminati i record contrassegnati da codici di errore che ne potrebbero compromettere l'affidabilità ai fini del calcolo degli indici di popolazione.

Le analisi sono state condotte utilizzando come unità territoriale la particella UTM 10x10 km, al cui interno generalmente vengono realizzati 15 punti di ascolto.

La soglia minima (n) di stazioni per particella affinché la stessa venga utilizzata per il calcolo di indici e indicatori è pari a 7. Dalla banca dati per le analisi sono dunque eliminate tutte le particelle, visitate almeno due volte nel periodo considerato, che presentino un numero di stazioni inferiore a 7.

Nel caso delle particelle posizionate sul confine geografico regionale, queste sono attribuite ad una determinata Regione, quando almeno 6 punti ricadono entro i confini regionali.

Qualora i trend delle specie risultino incerti, gli stessi sono ricalcolati utilizzando l'analisi statistica per punti (stazioni UTM 1x1 km).

Si fa tuttavia presente che per confrontare correttamente gli indici di popolazione tra anni, è necessario disporre di serie temporali relative alle stesse unità di campionamento (punti d'ascolto o particelle).

Nelle analisi a livello di particella, per effettuare correttamente il confronto tra anni è necessario disporre dello stesso numero di stazioni per particella. Per ogni particella viene dunque individuato il numero più basso di stazioni visitate nel corso dell'anno, selezionando per ogni anno questo stesso numero di stazioni, anche negli anni in cui le stazioni sono in numero più elevato. Come regola generale si è scelto di minimizzare il numero di dati scartati garantendo la migliore copertura temporale possibile.

La selezione delle stazioni all'interno della particella viene operata conservando le stazioni visitate nel maggiore numero di anni mentre, a parità di copertura, la selezione è casuale.

Per le analisi a livello di punto d'ascolto la selezione del *set* di dati è fatta a partire dal campione utilizzato per le analisi per particella, rispetto al quale viene aggiunto un ulteriore passaggio ovvero l'eliminazione delle stazioni che non sono state censite per almeno due anni.

Come misura di abbondanza relativa delle specie per il calcolo dei *trend* viene utilizzato il numero degli individui rilevati.

2.6 METODI DI CALCOLO DEI TREND DELLE SPECIE

I dati relativi agli uccelli comuni nidificanti in Italia vengono analizzati con metodi statistici sviluppati appositamente per l'analisi di serie temporali di conteggi contenenti diverse osservazioni mancanti. Questi metodi vengono applicati tramite un programma freeware sviluppato da Statistics Netherlands, appositamente per la produzione di indici temporali e tendenze demografiche, denominato TRIM (TRends and Indices for Monitoring data). L'utilizzo

di TRIM viene raccomandato dallo European Bird Census Council – EBCC ai fini della comparabilità degli indici provenienti dai diversi Paesi europei.

Allo stato attuale le funzionalità di TRIM sono state nuovamente implementate all'interno di un pacchetto del software di analisi statistica R (R Core Team 2017), denominato rtrim (Bogaart et al. 2018).

TRIM consente di analizzare le serie temporali di dati attraverso modelli log-lineari (Agresti 1990; McCullagh & Nedler 1989) con alcuni accorgimenti per la gestione della sovradispersione dei dati e della loro correlazione seriale, grazie all'utilizzo del metodo Equazioni di Stima Generalizzate (Liang & Zeger 1986; Zeger & Liang 1986) o GEE, dall'espressione anglosassone *Generalized Estimating Equations*.

Il modello di analisi utilizzato in TRIM consente, per ciascun anno della serie temporale, cambi di direzione interannuali negli andamenti di popolazione (denominati *changepoint*), dunque una descrizione molto precisa delle variazioni interannuali nelle dimensioni di popolazione. Solitamente viene utilizzato il maggior numero possibile di *changepoint* compatibilmente con la verosimiglianza del trend.

TRIM fornisce due prodotti principali:

- indici annuali
- tendenze sull'intero periodo

Riguardo a quest'ultimo parametro TRIM calcola la tendenza moltiplicativa, facilmente interpretabile come cambiamento percentuale medio per anno dell'indice.

Sulla base di questo parametro è possibile definire alcune categorie di andamento delle popolazioni nidificanti. Gli andamenti vengono classificati nel seguente modo:

- Incremento forte incremento annuo statisticamente significativo maggiore del 5%;
- Incremento moderato incremento statisticamente significativo, ma con valore di variazione non significativamente maggiore del 5% annuo;
- Stabile assenza di incrementi o diminuzioni statisticamente significative e variazione media annua generalmente inferiore al 5%;
- Declino moderato diminuzione statisticamente significativa, ma con valore di variazione non significativamente maggiore del 5% annuo;
- Declino marcato diminuzione annua statisticamente significativa maggiore del 5%;
- Incerto assenza di incrementi o diminuzioni statisticamente significative e variazione media annua generalmente superiore al 5%. Ricadono in questa categoria le specie per le quali, a partire dai dati analizzati, non è possibile definire statisticamente una tendenza in atto. L'incertezza statistica deriva da molteplici fattori tra i quali possiamo ad esempio includere la presenza di valori molto dissimili dell'indice di popolazione da un anno con l'altro o la diversa tendenza calcolata nelle unità di campionamento (in alcune particelle la specie può aumentare, mentre in altre diminuire). Per le specie più abbondanti e meglio distribuite l'inclusione nella categoria non significa necessariamente che l'andamento non sia realistico.

A queste categorie ne è stata aggiunta una ulteriore:

• Dati insufficienti – i dati di presenza della specie sono in numero troppo scarso per poter calcolare indici di popolazione annuali descrittivi dell'andamento, anche di tipo incerto, in corso. Si è scelto di considerare in questa categoria le specie per le quali il numero di casi positivi (ovvero il numero di volte che, nel periodo considerato, è stato rilevato almeno un individuo della specie nelle particelle selezionate per le analisi) è risultato pari o inferiore a 26 (corrispondente ad una media di due casi positivi per anno). La scelta di applicare criteri di esclusione dalle analisi più rigidi che nel passato è legato alla necessità di ottenere indicatori più realistici e meno soggetti a oscillazioni ampie e repentine.

Nelle analisi svolte su serie temporali di breve-medio termine, a seguito di problematiche

intrinseche ai metodi di stima del trend lineare, in alcuni casi può accadere che, da un anno all'altro, una specie venga classificata con un andamento diverso. Il continuo allungamento della serie temporale considerata porterà a ridurre sempre di più queste variazioni nella classificazione del trend.

Per ovviare, per quanto possibile, al problema dell'instabilità nei trend e per migliorare in generale l'affidabilità degli stessi, si applicano una serie di accorgimenti analitici, in particolare un utilizzo più ragionato dei *changepoint*, ovvero dei cambiamenti di direzione del trend.

In alcuni casi si procede a rimuovere un effetto troppo marcato del primo anno di indagine sulla stima degli andamenti di popolazione: è noto infatti che il valore dell'abbondanza di una specie stimato nell'anno iniziale di un programma di monitoraggio può generare effetti importanti sulla stima degli indici di popolazione negli anni successivi, riferibili però perlopiù ad assestamenti metodologici piuttosto che a reali variazioni nella consistenza delle popolazioni nidificanti (Voříšek et al. 2008).

Quando i dati a disposizione sono pochi e, in particolare, sono pochi i rilievi ripetuti da un anno a quello successivo, si procede al calcolo dei trend utilizzando la funzione di TRIM "linear trend" (senza changepoint) assumendo dunque un andamento lineare dell'indice di popolazione. Questa ricostruzione, che può essere verosimile su tempi brevi, potrebbe essere poco rappresentativa del reale andamento dell'indice di popolazione, soprattutto quando le serie storiche analizzate sono lunghe (Bogaart et al. 2018). Per maggiori dettagli si rimanda alla sezione "Metodologie e database".

2.7 METODI DI CALCOLO DELL'INDICATORE AGGREGATO

Il Farmland Bird Index viene calcolato come media geometrica degli indici relativi alle singole specie (Gregory & van Strien 2010; van Strien et al. 2012). Ciò poiché la media geometrica possiede le principali proprietà matematiche desiderabili per gli indicatori di biodiversità, con il solo punto debole di una elevata sensibilità all'aggiunta o all'eliminazione di alcune specie al sistema monitorato (van Strien et al. 2012).

La media geometrica è "robusta" in relazione all'influenza delle singole specie (Gregory & van Strien 2010). Un buon indicatore composito, funzionale alla rappresentazione dei cambiamenti della biodiversità, dovrebbe ben delineare l'andamento medio delle specie considerate per la costruzione dell'indicatore stesso (van Strien *et al.* 2012). In quest'ottica sarebbe auspicabile che il contributo delle singole specie all'indicatore risultasse ben bilanciato, senza casi di "sovra-rappresentazione" di poche o addirittura singole specie.

Questa proprietà può essere testata qualitativamente rimuovendo di volta in volta ognuna delle singole specie componenti l'indicatore e ricalcolando lo stesso (Gregory & van Strien 2010) attraverso una procedura di tipo *jackknife*. I risultati di questa procedura applicata ai dati regionali sono illustrati al termine del *report*, all'interno dell'APPENDICE A.

Naturalmente, maggiore è il numero di specie indicatrici utilizzate per il calcolo dell'indicatore composito e minore sarà l'influenza delle singole specie sull'indicatore.

Per aumentare il numero di specie utilizzate nel calcolo dell'indicatore e per evitare variazioni future nel numero di specie utilizzate, il *Farmland Bird Index* è calcolato utilizzando anche gli indici relativi alle specie per le quali la tendenza demografica è classificata come incerta (vedi paragrafo 2.6).

La media geometrica, come affermato in precedenza è sensibile alla scomparsa di specie (valore dell'indice di una determinata specie in un determinato anno pari a zero) o comunque a valori prossimi allo zero. Le specie il cui indice risulti pari a zero in uno degli anni di indagine andrebbero dunque rimosse dal set delle specie indicatrici poiché la media geometrica di un insieme di numeri contenenti uno zero è pari a zero. Quando l'indice di una determinata specie scende sotto il 5%, in accordo con le indicazioni di EBCC, il suo valore nel calcolo dell'indice viene tenuto pari a 5%. Ciò al fine di non rimuovere specie dall'indicatore, garantendo che ognuna di esse possa mantenere la propria influenza sull'indicatore stesso.

Per avere un'indicazione del trend dell'indicatore aggregato FBI è stato utilizzato il recentissimo strumento MSItools (Soldaat et al. 2017) messo a disposizione da Statistics Netherlands. Si

tratta di un pacchetto di script di R che consentono di stimare un trend lineare per l'indicatore nonché il relativo intervallo di confidenza al 95% attraverso simulazioni di Monte Carlo.

Una delle funzioni importanti di *MSItools* è la possibilità di classificare il trend del *Farmland Bird Index* al pari di quanto avviene con i trend delle singole specie, utilizzando peraltro le medesime categorie (vedi paragrafo 2.6).

3 IL FARMLAND BIRD INDEX REGIONALE NEL PERIODO 2000-2015

3.1 IL FARMLAND BIRD INDEX

Nella programmazione 2014-2020 della Politica Agricola Comune viene riconfermato l'indicatore di contesto ambientale C35 "Indice dell'avifauna in habitat agricolo (FBI)" (allegato 4 del Regolamento UE n. 808/2014²) che quindi si conferma un indicatore idoneo a rappresentare lo stato di salute degli ambienti agricoli europei e nazionali. Gli indicatori di contesto³ forniscono indicazioni sullo scenario nel quale opera il Programma di Sviluppo Rurale (PSR) e costituiscono un'utile base conoscitiva per valutare e interpretare gli impatti conseguiti nell'ambito del PSR alla luce delle tendenze economiche, sociali, strutturali o ambientali generali, oltre a fornire informazioni di base necessarie all'individuazione dei fabbisogni di intervento. Il Farmland Bird Index è quindi un indicatore di contesto che, come tale e nella forma presentata in questo lavoro, non può essere utilizzato per valutare l'impatto sulla biodiversità delle singole misure dei PSR.

Per l'utilizzo del Farmland Bird Index come indicatore di impatto (come descritto nella scheda contenuta nel documento IMPACT INDICATORS FOR THE CAP POST 2013 del Directorate L. Economic analysis, perspectives and evaluations della Commissione Europea) si rimanda alla Relazione "Programma di Sviluppo Rurale 2007-2013 dell'Emilia Romagna. Valutazione dell'impatto sulla biodiversità dei pagamenti agroambientali e delle misure di imboschimento mediante indicatori biologici: gli uccelli nidificanti" (https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/13874).

Il Farmland Bird Index è un indicatore aggregato calcolato come media geometrica degli indici di popolazione di ciascuna delle 19 specie tipiche degli ambienti agricoli regionali per le quali è stato possibile calcolare gli indici annuali di popolazione. L'andamento dell'indicatore composito è mostrato in Figura 3.1 e i valori annuali sono riportati nella Tabella 2. L'indicatore viene ricalcolato annualmente sulla base dei nuovi dati aggiunti (vedi paragrafo 1.1) e di conseguenza i valori assunti per ogni stagione di nidificazione possono differire da quelli calcolati in precedenza.

Nel 2009 nell'ambito del progetto finanziato dal Ministero delle Politiche agricole alimentari e forestali, la Lipu ha individuato specifici e distinti *set* di specie per ogni Regione, al fine di formulare indicatori FBI rappresentativi dei diversi paesaggi agrari regionali.

recante modalità di applicazione del Regolamento (UE) n. 1305/2013 del Parlamento europeo e del Consiglio sul sostegno allo sviluppo rurale da parte del Fondo europeo agricolo per lo sviluppo rurale (FEASR)

A partire dal 2013, la Commissione Europea ha fornito il set completo degli indicatori di contesto, strutturati in Indicatori socio-economici (da 1 a 12), Indicatori settoriali (da 13 a 30), Indicatori ambientali (da 31 a 45). Per ciascun indicatore, oltre al valore disponibile almeno a livello nazionale proveniente da fonti ufficiali UE (EUROSTAT, FADN, JRC ecc.), la Commissione Europea ha fornito la metodologia di calcolo e le relative unità di misura. Sulla base di queste indicazioni, la RRN ha predisposto la propria banca dati con valori aggiornati (e/o validati) rispetto ai dati europei. La logica perseguita è stata quella di raccogliere e/o calcolare dati omogenei e confrontabili ad un dettaglio territoriale maggiore (zone PSN, regionale, comunale) laddove disponibile, avvalendosi della collaborazione di altri istituti di ricerca (ISTAT, ISPRA) nel rispetto dell'impostazione metodologica della Commissione Europea. La banca dati degli indicatori è online sul sito della Rete Rurale Nazionale https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/12112.

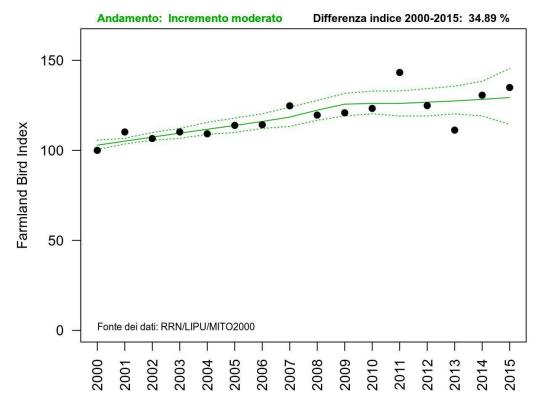


Figura 3.1: Andamento del Farmland Bird Index regionale nel periodo 2000-2015. I punti indicano i valori annuali del Farmland Bird Index (calcolato come media geometrica degli andamenti delle singole specie), la linea continua e le linee tratteggiate rappresentano rispettivamente la tendenza dell'indice ed il relativo intervallo di confidenza al 95% (stimati con MSI-tool).

Tabella 2: Valori assunti dal Farmland Bird Index nel periodo 2000-2015.

Anno	Farmland Bird Index	
2000	100,00	
2001	110,21	
2002	106,56	
2003	110,22	
2004	109,21	
2005	113,87	
2006	114,22	
2007	124,73	
2008	119,58	
2009	120,86	
2010	123,30	
2011	143,25	
2012	124,86	
2013	111,24	
2014	130,64	
2015	134,89	

3.2 ANDAMENTI DI POPOLAZIONE DELLE SPECIE AGRICOLE

L'andamento di popolazione delle specie degli ambienti agricoli individuate per il calcolo del *Farmland Bird Index* regionale in Molise è riportato in Tabella 3.

Tabella 3: Riepilogo degli andamenti di popolazione registrati nei 16 anni di indagine, per le specie degli ambienti agricoli. Per ciascuna specie sono riportati l'andamento di popolazione stimato per il periodo 2000-2015, il metodo di analisi adottato (PA: particelle, pu: punti), il numero di casi positivi (N. positivi), ovvero il numero di volte che, nel periodo considerato è stato rilevato almeno un individuo della specie nelle unità di rilevamento selezionate per le analisi, il numero di unità di rilevamento, particelle o punti, (N. siti), la variazione media annua (con il relativo errore standard) e la significatività (* = p < 0.05; ** = p < 0.01) degli andamenti 2000-2015 (Sig.). Simboli utilizzati per gli andamenti: DD: dati insufficienti; =: stabile; +: incremento moderato; ++: incremento forte; -: declino moderato; --: declino forte; <>: incerto.

Specie	2000 2015	Metodo	N. positivi	N. siti	Variazione media annua ± ES	Sig.
Gheppio	<>	pu	79	67	-4,84 ± 2,49	
Cuculo	+	pu	101	83	5,05 ± 2,28	*
Torcicollo	DD	PA	14	10		
Cappellaccia	DD	pu	24	10		
Tottavilla	<>	pu	73	57	1,40 ± 2,99	
Allodola	<>	pu	97	59	-1,39 ± 1,87	
Rondine	+	PA	63	22	7,69 ± 2,36	**
Calandro	+	pu	56	34	10,35±3,97	*
Usignolo	+	PA	73	22	4,38 ± 1,34	**
Saltimpalo	<>	pu	75	56	-1,51 ± 2,59	
Beccamoschino	<>	pu	71	52	-3,86 ± 2,30	
Occhiocotto	DD	PA	24	13		
Sterpazzola	=	pu	217	120	1,96 ± 1,42	
Averla piccola	<>	pu	53	41	-4,86 ± 3,12	
Gazza	+	PA	73	22	5,93 ± 1,43	**
Cornacchia grigia	=	PA	78	23	-0,51 ± 1,84	
Passera d'Italia	++	PA	72	23	11,31 ± 2,63	**
Passera mattugia	DD	PA	14	13		
Verzellino	=	PA	70	23	-0,09 ± 1,89	
Verdone	<>	pu	59	48	-1,92 ± 2,74	
Cardellino	<>	pu	232	147	-2,72 ± 1,32	*
Zigolo giallo	DD	PA	20	9		
Zigolo nero	=	PA	72	23	0,69 ± 1,42	
Strillozzo	+	PA	70	23	5,23 ± 1,44	**

Nella Figura 3.2 si riporta la suddivisione delle specie legate agli ambienti agricoli in base all'andamento di popolazione nei periodi 2000-2015.

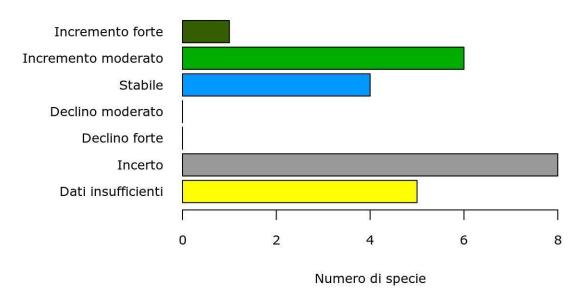


Figura 3.2: Suddivisione delle specie agricole secondo le tendenze in atto nel periodo 2000-2015.

3.3 CONSIDERAZIONI SUI RISULTATI OTTENUTI

I dati raccolti con il contributo del Ministero delle politiche agricole alimentari e forestali tra il 2009 e il 2015, congiuntamente a quelli presenti nella banca dati del progetto MITO2000 relativi al periodo 2000-2008, consentono di definire con certezza, al momento attuale, le tendenze in atto di 11 specie sulle 24 considerate (Tabella 3).

Il Farmland Bird Index stimato con i dati a disposizione è risultato in incremento moderato nel periodo considerato, raggiungendo nel 2015 un valore pari al 134,89% rispetto a quello iniziale (Figura 3.1 e Tabella 2).

Nella lettura di questo risultato va tenuto conto che, dal 2013, l'andamento delle specie agricole regionali viene stimato utilizzando il modello "linear trend" senza changepoint disponibile in rtrim (vedi paragrafo 2.6). Questa opzione, che prevede una variazione costante dell'abbondanza delle specie nel periodo considerato, porta a risultati che potrebbero risultare adeguati per brevi serie temporali ma che sono verosimilmente poco realistici con l'allungarsi del periodo considerato (Bogaart et al. 2018).

La scelta metodologica è dovuta alla scarsa disponibilità di dati presenti nel database regionale e al perdurare di risultati insoddisfacenti in relazione alle stime degli andamenti. I risultati conseguiti vanno dunque letti per cercare di comprendere la tendenza generale degli uccelli di ambiente agricolo sul territorio regionale ma non possono essere considerati una ricostruzione fedele dell'andamento dell'indicatore composito nel periodo di indagine.

Oltre la metà delle specie per le quali è possibile ricavare un andamento definito dell'indice di popolazione hanno mostrato tendenze all'incremento: in alcuni casi si tratta di tendenze in linea con il dato nazionale, come ad esempio per gazza e strillozzo mentre in altri al contrario, il dato è evidentemente in contrasto con il dato nazionale, come nel caso di rondine e passera d'Italia, sebbene risulti abbastanza in linea con quello relativo alle regioni confinanti.

Dal punto di vista analitico il *Farmland Bird Index* regionale rispecchia in maniera piuttosto equilibrata gli andamenti delle specie considerate per il suo calcolo; l'influenza delle singole specie sui valori dell'indicatore è piuttosto contenuta (vedi paragrafo 3.4) e sempre inferiore

al 4%, con la sola eccezione del calandro. Bisogna comunque considerare che quando gli andamenti vengono calcolati ipotizzando un andamento lineare, come appunto è stato fatto con i dati regionali, questo risultato è piuttosto naturale.

La situazione della banca dati regionale permane piuttosto critica. Nonostante il rafforzamento del piano di campionamento degli ultimi anni vi sono ancora 5 specie per le quali il numero di dati disponibili non è considerato sufficiente per poter procedere con la stima degli andamenti di popolazione. Per queste specie e in particolare per torcicollo, passera mattugia e zigolo giallo, senza un'integrazione mirata del piano di campionamento (che non è tuttavia prevista dal presente progetto) risulta poco plausibile il superamento della soglia stabilita per poter procedere al calcolo degli andamenti di popolazione (vedi paragrafo 2.6).

Un possibile incremento del piano di campionamento regionale potrebbe condurre ad alcuni miglioramenti visibili, in particolare portando a stime definite degli andamenti per qualcuna delle 8 specie per le quali risultano attualmente andamenti di tipo incerto. Questo obiettivo va però pensato sul medio-lungo periodo, senza peraltro la prospettiva di ricostruire in maniera verosimile gli andamenti di popolazione delle specie a vocazione agricola per i primi anni della serie storica.

3.4 APPENDICE A: CONTRIBUTI DELLE SINGOLE SPECIE AL FARMLAND BIRD INDEX

Un buon indicatore composito, funzionale alla rappresentazione dei cambiamenti della biodiversità, dovrebbe ben delineare l'andamento medio delle specie considerate per la costruzione dell'indicatore stesso (van Strien *et al.* 2012). In quest'ottica sarebbe auspicabile che il contributo delle singole specie all'indicatore risultasse ben bilanciato, senza casi di "sovra-rappresentazione" di poche o addirittura singole specie.

Al fine di valutare il peso degli indici delle singole specie sul corrispondente valore dell'indicatore composito è stata implementata una procedura di tipo *Jackknife* consistente nel calcolo del *Farmland Bird Index* togliendo di volta in volta una delle specie considerate nel calcolo dell'indicatore composito (Gregory & van Strien 2010).

L'andamento degli indicatori risultanti (linee grigie) è riportato in Figura 3.3. La vicinanza delle diverse linee al *Farmland Bird Index* complessivo (linea nera) è misura di un buon equilibrio delle specie considerate dal punto di vista dei singoli apporti al valore complessivo dell'indicatore.

Deviazioni importanti delle linee grigie dal *Farmland Bird Index* indicherebbero invece situazioni in cui una singola specie ha un'influenza importante sul valore definitivo dell'indicatore. In presenza di questi casi sarebbe importante poter individuare le specie che maggiormente contribuiscono al valore dell'indicatore e stimare la consistenza di tale influenza, in modo da poter meglio valutare la rappresentatività dell'indicatore composito in relazione al *set* di specie su cui esso è basato. Pertanto, se una specie condiziona in modo sensibile l'andamento dell'indicatore aggregato, si ritiene utile indicarlo nei risultati.

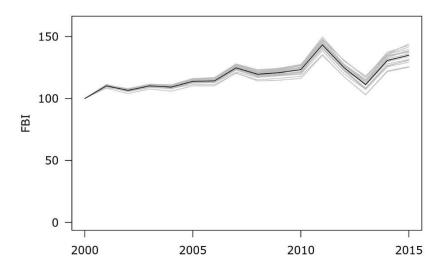


Figura 3.3: Farmland Bird Index regionale nella sua versione definitiva (linea nera) e nelle versioni risultanti dal ricalcolo dell'indicatore effettuato togliendo di volta in volta una delle specie agricole.

Per ogni specie e per ogni anno è dunque stata stimata la differenza percentuale, in valore assoluto, tra il *Farmland Bird Index* e l'indicatore ricalcolato senza considerare la specie stessa. Questa operazione ha permesso di avere, per ciascuna specie, una stima dell'entità del contributo al *Farmland Bird Index* nel periodo indagato. I valori medi (colonne grigie), massimi e minimi (barre di errore) di questi contributi sono riportati nella Figura 3.4.

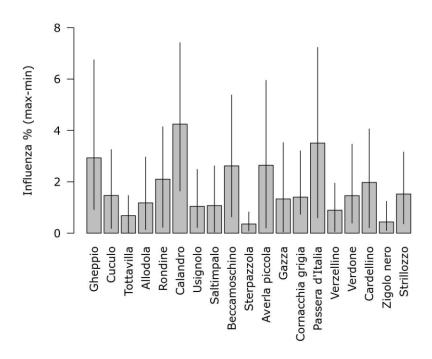


Figura 3.4: Sensitività del Farmland Bird Index al contributo delle singole specie. Per ogni specie è stata stimata la differenza percentuale in valore assoluto tra il Farmland Bird Index e l'indicatore ricalcolato senza considerare la specie stessa. Le colonne rappresentano i valori medi negli anni di indagine; le barre di errore il range dei valori.

4 BIBLIOGRAFIA

- Agresti, A. (1990) Categorical data analysis. John Wiley, New York.
- Blondel, J., Ferry, C. & Frochot, B. (1981) Point counts with unlimited distance. *Studies in avian biology* 6, 414–420.
- Bogaart, P., Loo, M. van der & Pannekoek, J. (2018) *rtrim: Trends and Indices for Monitoring Data*. Available from: https://CRAN.R-project.org/package=rtrim.
- Fornasari, L., de Carli, E., Brambilla, S., Buvoli, L., Maritan, E. & Mingozzi, T. (2002) Distribuzione dell'Avifauna nidificante in Italia: primo bollettino del progetto di Monitoraggio MITO2000. *Avocetta* 26, 59–115.
- Gregory, R.D. & van Strien, A. (2010) Wild bird indicators: using composite population trends of birds as measures of environmental health. *Ornithol Sci* 9, 3–22.
- Liang, K.-Y. & Zeger, S.L. (1986) Longitudinal Data Analysis Using Generalized Linear Models. *Biometrika* 73(1), 13–22.
- McCullagh, P. & Nedler, J.A. (1989) Generalized Linear Models. Chapman & Hall, London.
- R Core Team (2017) R: A language and environment for statistical computing.
- Rete Rurale Nazionale & Lipu (2019) Farmland Bird Index nazionale e andamenti di popolazione delle specie in Italia nel periodo 2000-2015.
- Soldaat, L.L., Pannekoek, J., Verweij, R.J.T., van Turnhout, C.A.M. & van Strien, A.J. (2017) A Monte Carlo method to account for sampling error in multi-species indicators. *Ecological Indicators* 81, 340–347.
- Van Strien, A.J., Soldaat, L.L. & Gregory, R.D. (2012) Desirable mathematical properties of indicators for biodiversity change. *Ecological Indicators* 14, 202–208.
- Voříšek, P., Klvaňová, A., Wotton, S. & Gregory, R.D. eds. (2008) *A best practice guide for wild bird monitoring schemes*. CSO/RSPB.
- Zeger, S.L. & Liang, K.-Y. (1986) Longitudinal Data Analysis for Discrete and Continuous Outcomes. *Biometrics* 42(1), 121–130.

5 RINGRAZIAMENTI

Si ringraziano i coordinatori regionali e rilevatori che hanno partecipato al progetto MITO2000 dal 2000 al 2008:

Coordinatori: Pellegrini Massimo (2000), De Lisio Lorenzo (2001-2008)

Rilevatori: Aceto Franco, Bernoni Mauro, Brichetti Pierandrea, Corso Andrea, De Lisio Lorenzo, Pellegrini Massimo