
RETERURALE NAZIONALE 20142020

Giovedi 21 Novembre 2024 Giornata Nazionale degli Alberi

Analisi economica delle utilità ecosistemiche

SANDRO SACCHELLI – Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università degli Studi di Firenze

La valutazione economico-finanziaria delle utilità ecosistemiche e dei mancati danni connessi agli interventi di diradamento segue l'approccio della Teoria dell'Utilità Sociale (Pearce et al., 2003) e del **Valore Economico Totale** (Marinelli e Marone, 2013)

Approvvigionamento

Cibo

Materie prime

Acqua potabile

Risorse medicinali

Valori culturali

Ricreazione e salute mentale e fisica

Turismo

Apprezzamento estetico e ispirazione per cultura, arte e design

Esperienza spirituale e senso di appartenenza

Regolazione

Clima locale e qualità dell'aria

Sequestro e stoccaggio del carbonio

Moderazione di eventi estremi

Trattamento delle acque reflue

Prevenzione dell'erosione e mantenimento della fertilità del suolo

Impollinazione

Controllo biologico

Supporto alla vita

Habitat per specie

Mantenimento della diversità genetica

Sono stati selezionati quattro Servizi Ecosistemici Forestali

Millennium Ecosystem Assessment

Ecosystems

and Human

Well-being

"servizio" di approvvigionamento (produzione legnosa);

- "servizio" culturale (valore estetico-ricreativo);

- "servizi" di regolazione (protezione dall'erosione e stoccaggio del carbonio).

PRODUZIONE LEGNOSA

Il valore finanziario della produzione legnosa è quantificato attraverso il calcolo del valore di

macchiatico (VM) degli interventi di utilizzazione.

ı İiili

PRODUZIONE LEGNOSA

$$VM_n = I_n - S_n$$

Il calcolo della parte attiva è sviluppato secondo la formula:

$$I_n = H_Vol_n \cdot p$$

Il calcolo dei costi ha previsto un'analisi dei prezzari regionali per le operazioni di riferimento (database relativi alle operazioni di diradamento in fustaie di conifere, comprensive di taglio, allestimento, esbosco e sistemazione della ramaglia; voci di spesa aggiornate all'anno 2024 per Toscana e Calabria). Le ulteriori voci di costo integrate dal modello sono rappresentate dalle spese generali, cioè le spese di direzione, le spese amministrative e gli interessi sul capitale anticipato (Bernetti e Romano, 2007).

VALORE ESTETICO

Il calcolo del valore estetico è incentrato sul lavoro di Ribe (2009), in cui vengono analizzate varie tipologie di soprassuolo di conifere (maturo, invecchiato e soggetto a tagli di utilizzazione) al fine di stabilire la valenza scenica (percezione estetica on-site) attribuita da un campione di intervistati attraverso il **Ratio Scenic Beauty Estimate** (RSBE). Il RSBE è calcolato in funzione *dell'area basimetrica*, *della densità di piante ad ettaro e delle caratteristiche dell'utilizzazione* (distribuzione delle piante e rilascio di legno a terra).

VALORE ESTETICO

$$RSBE_n = -108, 3 + 4, 1 \cdot B_n - 0, 02 \cdot B_n^2 - 0, 00004 \cdot B_n^3$$

I valori di RSBE variano nel range +150 ÷ -150. Questo valore adimensionale è stato gestito attraverso l'applicazione dell'approccio del *Benefit Transfer* (BT) (Grilli *et al.*, 2014) basato su una meta-analisi incentrata sulla ricerca di articoli in cui venivano utilizzati la Valutazione Contingente, gli Esperimenti a Scelta Discreta e il Metodo del Costo del Viaggio.

Risulta una Disponibilità a Pagare (DAP) di 7,79 €/visita anno⁻¹ per boschi di conifere, trasferita secondo l'approccio del BT ai casi oggetto di indagine. Il valore di DAP ottenuto può dunque essere ritenuto (cautelativamente) espressivo della disponibilità a pagare per boschi con valore estetico ottimale (RSBE = +150).

2 ii

VALORE ESTETICO

Con questa ipotesi è possibile quantificare il valore di DAP annua pesando la DAP potenziale sul valore di RSBE

normalizzato nel range 0-1 ($norm_{RSBE}$)

$$norm_{RSBE,n} = 1 - \left(\frac{ideal_{RSBE} - RSBE_n}{ideal_{RSBE} - antiideal_{RSBE}}\right)$$

Il valore estetico (VE_n) (\in ha⁻¹ anno⁻¹) del soprassuolo è calcolato come:

$$VE_n = 7,79 \cdot norm_{RSBE} \cdot n_visit$$

PROTEZIONE DALL'EROSIONE

Il modello si basa sulla **quantificazione dell'erosione di suolo evitata** grazie all'azione frenante della copertura forestale nei confronti dell'effetto delle precipitazioni atmosferiche. Il valore economico dell'erosione evitata è poi derivato dalla correlazione con il **prezzo di rimozione del sedimento da potenziali bacini posti a valle dell'area forestale** (Sacchelli *et al.*, 2021).

PROTEZIONE DALL'EROSIONE

Revised Universal Soil Loss Equation (RUSLE2015):

$$E = R \cdot K \cdot LS \cdot C \cdot P$$

La valutazione dell'erosione evitata si basa, per ogni sito, sulla differenza tra il fattore C_n con bosco e il fattore C_0 nell'ipotesi di assenza della copertura forestale (θ_n =0). Il valore di C è quantificato secondo la formula riportata in Panagos et al. (2015):

$$C = C_{minLU} + (C_{maxLU} - C_{minLU}) \cdot (1 - \theta_n)$$

con C_{minLU} e C_{maxLU} , rispettivamente, valori minimo e massimo di C per i boschi e θ_n frazione di copertura della chioma al suolo all'anno n.

PROTEZIONE DALL'EROSIONE

L'erosione evitata all'anno n è quindi calcolata come:

$$E_n = R \cdot K \cdot LS \cdot (C_0 - C_n)$$

Il dato E_n è stato poi ricalibrato con l'applicazione del coefficiente di trasporto solido (*Sediment Delivery Ratio*, SDR) (De Rosa *et al.*, 2016) in grado di quantificare l'effettivo conferimento di detriti superficiali dal versante del bacino all'invaso artificiale.

Il valore monetario della protezione dall'erosione (VP) è quindi basato sul costo unitario (α) di rimozione dei sedimenti da bacini o invasi artificiali secondo quanto stabilito in Palmieri $et\ al.\ (2014)\ (29,29\ \mbox{\ensuremath{\not{e}}/}t)$:

$$VP_n = E_n \cdot SDR \cdot \alpha$$

STOCCAGGIO DEL CARBONIO ATMOSFERICO

La stima del valore economico del carbonio sequestrato dai soprassuoli indagati è stata sviluppata con metodi indiretti a partire dalle equazioni allometriche e al *Biomass Expansion Factor* (BEF), che hanno portato al calcolo della biomassa epigea (Vitullo *et al.*, 2007; Vangi *et al.*, 2023). Il carbonio totale si ottiene moltiplicando la biomassa per il suo contenuto di carbonio. Per ottenere la massa della CO_2 stoccata si moltiplica la massa del carbonio per il coefficiente β di 3,67. La quantificazione del prezzo di scambio del credito di carbonio (γ) è basata sul valore dell'*Emission Trading System* (ETS) dell'UE.

VALORE ECONOMICO TOTALE

$$VA_{VM} = \sum_{n=1}^{x} \frac{VM_n}{q^n} \qquad VA_{VE} = \sum_{n=1}^{x} \frac{VE_n}{q^n} \qquad VA_{VP} = \sum_{n=1}^{x} \frac{VP_n}{q^n} \qquad VA_{VC} = \sum_{n=1}^{x} \frac{VC_n}{q^n}$$

$$VA_{VE} = \sum_{n=1}^{x} \frac{VE_n}{q^n}$$

$$VA_{VP} = \sum_{n=1}^{x} \frac{VP_n}{q^n}$$

$$VA_{VC} = \sum_{n=1}^{x} \frac{VC_n}{q^n}$$

$$VA_VET = VA_VM + VA_VE + VA_VP + VA_VC$$

ANALISI ECONOMICA DEI MANCATI DANNI

Il mancato danno può essere valutato attraverso la differenza tra la probabilità di effetti avversi (focalizzando l'attenzione sui danni da vento) senza diradamento e la stessa probabilità con diradamento.

La stabilità strutturale dei popolamenti di conifere è calcolata tramite il **rapporto ipsodiametrico**.

Seguendo l'approccio di Mickovski *et al.* (2005) è possibile evidenziare un trend di rischio correlato al rapporto ipsodiametrico \rightarrow quantificazione del valore medio del rapporto ipsodiametrico per ogni scenario.

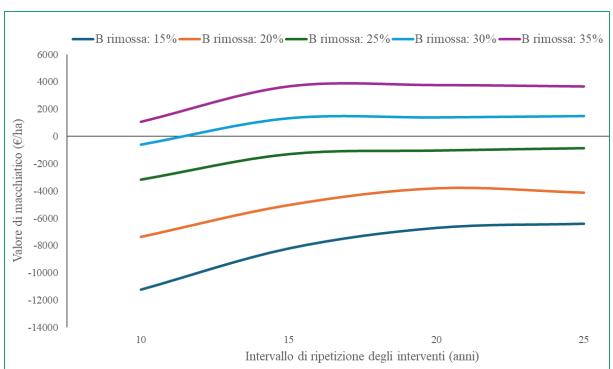
Con l'obiettivo di identificare un coefficiente di stabilità dei popolamenti (δ), il **rapporto ipsodiametrico è stato normalizzato** nel range 0-1 con la tecnica della *compromise programming* (Romero e Rehman, 2003).

ANALISI ECONOMICA DEI MANCATI DANNI

Il danno evitato risulta dalla combinazione (probabilità congiunta), per ogni parcella e scenario, tra il valore economico totale, la probabilità di incremento di stabilità legata ai diradamenti e la probabilità di venti estremi annua (λ) (Sacchelli *et al.* 2018) e il periodo di riferimento

analizzato espresso in anni (μ) .

$$E(MD) = VA_VET \cdot \lambda \cdot \mu \cdot (\delta_{no_{dir}} - \delta_{dir})$$



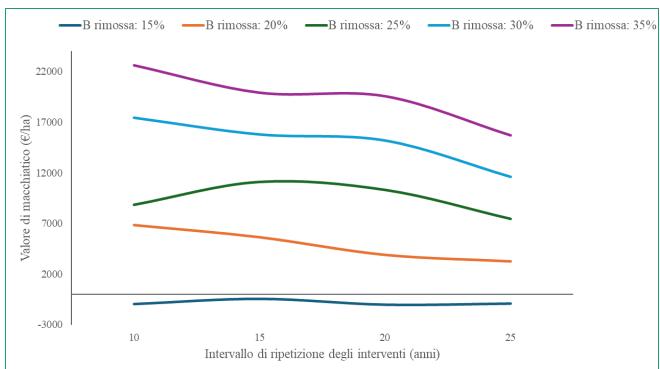
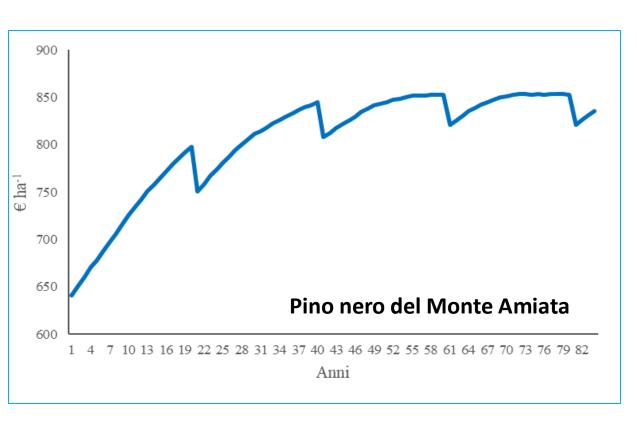
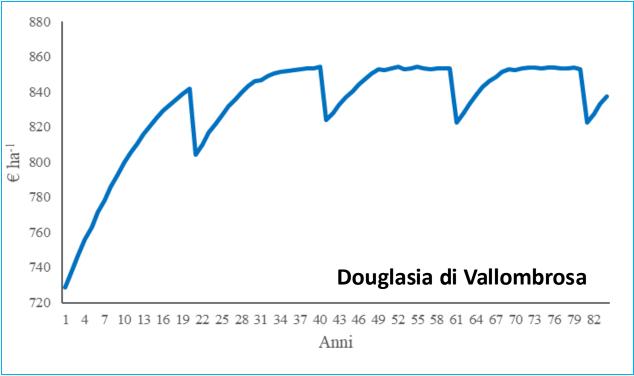


Foto: Ulrich Wasem (WSL)

RISULTATI – PRODUZIONE LEGNOSA

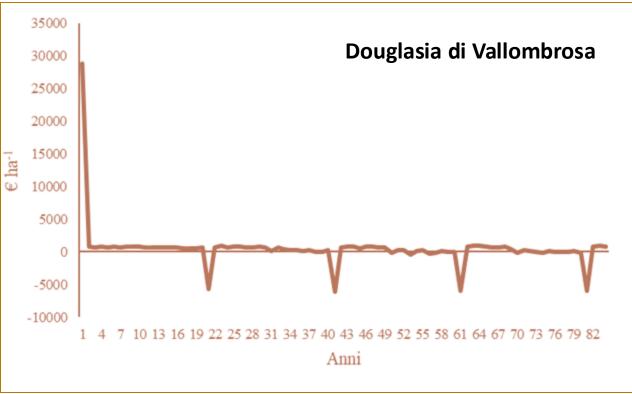
Valore di macchiatico attualizzato in funzione dell'area basimetrica (B) rimossa e dell'intervallo di ripetizione degli interventi (SX: pino nero del Monte Amiata, DX: douglasia di Vallombrosa).





RISULTATI – VALORE ESTETICO

Esempio di andamento del valore estetico in € ha⁻¹ (non attualizzato). Intervallo di ripetizione degli interventi di 20 anni e intensità di prelievo del 15% di area basimetrica.



RISULTATI – STOCCAGGIO DEL CARBONIO ATMOSFERICO

Esempio di andamento del valore dello stoccaggio di carbonio in € ha⁻¹ (non attualizzato). Intervallo di ripetizione degli interventi di 20 anni e intensità di prelievo del 15% di area basimetrica).

RISULTATI – VALORE ECONOMICO TOTALE E MANCATI DANNI

Pino nero del Monte Amiata

Douglasia di Vallombrosa

Scenario	VA_VM	VA_VE	VA_VP	VA_VC	VA_VET	H/D med	<i>E(MD) (€)</i>	E(MD) su	Scenario	VA_VM	VA_VE	VA_VP	VA_VC	VA_VET	H/D med	<i>E(MD) (€)</i>	E(MD) su
		_		_	_		_	VET									VET
	€	€	€	€	€		€	%		€	€	€	€	€		€	%
10_15	-11250	25933	141	30671	45495	65	2353	5	10_15	-947	27961	197	35968	63178	63	1606	3
10_20	-7377	24622	142	27394	44781	63	3586	8	10_20	6851	26820	196	32317	66185	60	3110	5
10_25	-3164	23188	141	24353	44517	60	4930	11	10_25	12758	25464	195	28864	67281	58	4757	7
10_30	-625	21713	140	21472	42700	57	6082	14	10_30	17439	24017	193	25584	67233	55	6385	9
10_35	1072	20143	139	18652	40007	55	7031	18	10_35	22601	22466	192	22490	67750	52	8137	12
15_15	-8224	26803	142	33762	52482	67	1601	3	15_15	-445	28481	197	38247	66479	64	959	1
15_20	-5033	25936	142	31168	52213	65	2573	5	15_20	5637	27888	196	36195	69917	63	1747	2
15_25	-1305	24931	141	28665	52433	63	3659	7	15_25	11098	27058	195	33641	71992	61	2856	4
15_30	1313	23824	140	26221	51498	61	4812	9	15_30	15788	26062	194	30946	72989	59	4152	6
15_35	3674	22668	139	23842	50323	59	5919	12	15_35	19915	24919	193	28216	73243	57	5577	8
20_15	-6708	27125	142	34304	54863	67	1219	2	20_15	-1011	28644	197	38448	66277	64	717	1
20_20	-3795	26511	142	32463	55322	66	1919	3	20_20	3877	28213	196	36841	69127	63	1230	2
20_25	-1042	25755	141	30428	55281	65	2771	5	20_25	10307	27663	195	34985	73151	62	1946	3
20_30	1375	24879	140	28122	54516	64	3698	7	20_30	15182	26965	194	32950	75292	61	2881	4
20_35	3768	23972	140	26134	54014	62	4666	9	20_35	19567	26111	193	30539	76410	60	4005	5
25_15	-6402	27275	142	35190	56204	68	1037	2	25_15	-905	28725	197	39228	67245	64	618	1
25_20	-4116	26768	142	33659	56452	67	1581	3	25_20	3226	28360	196	37879	69662	64	1023	1
25_25	-871	26156	141	31909	57336	66	2281	4	25_25	7437	27895	195	36273	71801	63	1548	2
25_30	1476	25467	140	30131	57215	65	3045	5	25_30	11591	27345	194	34553	73684	62	2206	3
25_35	3665	24679	140	28329	56813	63	3919	7	25_35	15720	26706	193	32853	75472	61	3012	4

Risultati economici per le pinete di pino nero del Monte Amiata e le piantagioni di douglasia (valori ad ettaro).

RISULTATI – VOLUME ASPORTATO PER SINGOLO DIRADAMENTO

	In	tervallo di ripetizion	e degli interventi: 10) anni		
Anno del taglio	B asport.: 15%	B. asport.: 20%	B asport.: 25%	B asport.: 30%	B asport.: 35%	
n	72	96	120	144	168	
n+10	90	115	137	157	174	
n+20	108	136	159	177	190	
n+30	127	157	181	200	213	
n+40	142	176	202	223	233	
n+50	155	191	220	236	256	
n+60	169	207	234	260	271	
n+70	178	216	255	276	284	
n+80	186	232	271	284	276	
	In	tervallo di ripetizion	e degli interventi: 15	anni		
Anno del taglio	B asport.: 15%	B. asport.: 20%	B asport.: 25%	B asport.: 30%	B asport.: 35%	
n	72	96	120	144	168	
n+15	104	134	163	189	211	
n+30	134	175	210	240	265	
n+45	154	206	248	281	311	
n+60	170	230	279	319	343	
n+75	182	246	304	347	387	
	In	tervallo di ripetizion	e degli interventi: 20) anni		
Anno del taglio	B asport.: 15%	B. asport.: 20%	B asport.: 25%	B asport.: 30%	B asport.: 35%	
n	72	96	120	144	168	
n+20	117	154	189	222	251	
n+40	150	201	252	296	335	
n+60	169	228	290	348	395	
n+80	183	246	312	379	431	
	In	tervallo di ripetizion	e degli interventi: 25	anni		
Anno del taglio	B asport.: 15%	B. asport.: 20%	B asport.: 25%	B asport.: 30%	B asport.: 35%	
n	72	96	120	144	168	
n+25	129	170	211	250	287	
n+50	158	212	269	327	386	
n+75	180	241	307	372	438	

Volume asportato per singolo diradamento (m³ ha¹¹), in funzione dell'anno di intervento, dell'intervallo di ripetizione degli interventi e della percentuale di area basimetrica (B) prelevata. In rosso: interventi di utilizzazione a macchiatico negativo. Douglasia di Vallombrosa.

TAVOLA ALSOMETRICA DELLA DOUGLASIA IN TOSCANA

Età	Altezza dominante	Diametro meido delle piante dominanti	M	IASSA PF	RINCIPAL	Æ	MA	ASSA INT	ERCALA	RE		INCREMENTI				
			Numero delle piante	Area basimetrica	Diametro medio	Volume	Numero delle piante	Area basimetrica	Diametro medio	Volume	Massa totale	di massa principale			massa totale	
			Nur	Aı basin	Diar	Vol	Nur	Aı basim	Diar me	Осишо		medio	corrente	percentuale	medio	
anni	m.	cm.	n.	mq.	cm.	mc.	n.	mq.	cm.	cm.	mc.	mc.	mc.	%	mc.	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
	I ^a classe di fertilità															
20	20,10	28,2	994	36,75	21,7	319	225	3,46	14,0	25	344	15,95			17,20	
													23,6	6,24		
25	23,80	33,0	814	42,22	25,7	437	180	4,18	17,2	49	511	17,48			20,44	
													20,0	4,11		
30	27,00	37,0	702	46,70	29,1	537	112	3,34	19,5	49	660	17,90			22,00	
													17,2	2,97		
35	30,00	40,8	616	50,50	32,3	623	86	3,04	21,2	50	796	17,80			22,74	
													15,0	2,27		
40	32,90	44,5	548	53,98	35,4	698	68	2,75	22,7	51	922	17,45			23,05	
													13,0	1,78		
45	35,60	48,0	497	57,22	31,3	763	Il	2,27	23,8	48	1031	16,96			23,00	
													11,4	1,44		
50	38,20	51,3	455	60,12	41,0	820	42	2,05	24,9	43	1135	16,40			22,70	

PSEUDOTSUGA DOUGLASII della Toscana – M. Cantiani (Ricerche sperimentali di dendrometria e di auxometria – Fasc. IV – Firenze 1965 – pag. 60-61). Tavole alsometriche a cinque classi di fertilità).

DISCUSSIONE - INDICAZIONI OPERATIVE

• Il valore di macchiatico attualizzato risulta positivo a partire (mediamente) da un livello di area basimetrica asportata pari al 25% per le pinete di pino nero e pino laricio, con intervallo di ripetizione orientativo intorno a 25 anni. Nel caso della douglasia tale soglia scende al 20% grazie alla miglior efficienza finanziaria degli interventi su tali soprassuoli, con intervallo di ripetizione orientativo intorno a 15 anni.

• Il valore monetario attualizzato delle altre utilità ecosistemiche considerate (protezione dall'erosione, stoccaggio del carbonio, valore estetico-ricreativo) decresce al crescere dell'area basimetrica asportata e cresce all'aumentare dell'intervallo di diradamento.

 Per le tipologie di soprassuolo esaminate, il valore economico della funzione estetica e della fissazione del carbonio risultano sensibilmente superiori rispetto alla funzione produttiva e a quella di protezione dall'erosione, indipendentemente dal regime di diradamento, non evidenziando un marcato trade-off tra le diverse utilità in termini monetari.

DISCUSSIONE - INDICAZIONI OPERATIVE

• Il Valore Economico Totale dei boschi di pino nero e pino laricio evidenzia un valore medio di circa 60.000 € ha⁻¹; quello dei soprassuoli di douglasia è pari a circa 70.000 € ha⁻¹. Entrambi i valori si riferiscono ai flussi di cassa attualizzati nel periodo 2016-2100.

• In generale, i mancati danni sono coperti economicamente dal Valore Economico Totale dei soprassuoli considerati anche in presenza di risultati finanziari degli interventi di utilizzazione (macchiatico attualizzato) negativi. Questo è vero (mediamente) per livelli di area basimetrica asportata pari ad almeno il 25% nelle pinete e al 20% nelle piantagioni di douglasia.

• Le valutazioni economico-finanziarie condotte e l'analisi dei mancati danni vanno intese come cautelative, sia per le assunzioni sottese a livello metodologico, sia per la possibilità di integrare ulteriori utilità ecosistemiche.

Grazie per l'attenzione Sandro Sacchelli DAGRI-UNIFI: sandro.sacchelli@unifi.it