



Agroforestazione in Piemonte: opportunità dal progetto 'MRV4SOC' 15 Maggio 2024

Sperimentazione con Veneto Agricoltura

Anna Panozzo

DAFNAE - Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente.

Università di Padova

AIAF

Associazione Italiana AgroForestazione

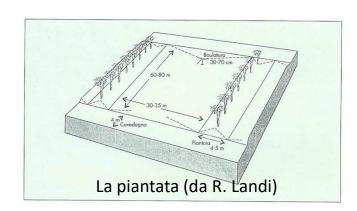
EURAF

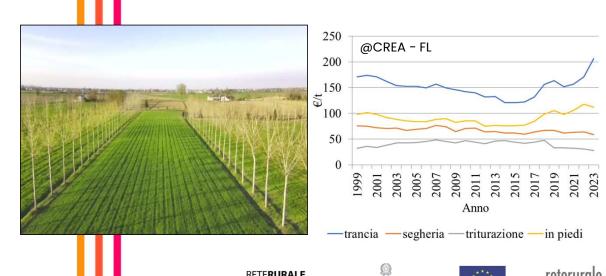
European Agroforestry Federation

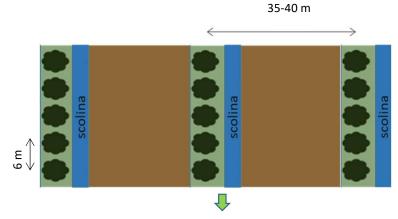
Dalla piantata veneta ai sistemi silvoarabili

Coltura promiscua: consociazione di specie legnose, viti e colture arative, in tutta l'Europa meridionale

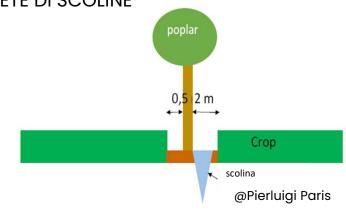
Colture promiscue vicino al Po (*Il paesaggio italiano*, Sestini), 1963






Vista della pianura di Torreglia da Villa Algarotti (Colli Euganei, Padova) 1782

Pioppo: protagonista dei sistemi AF di pianura


- Rapido accrescimento
- Tecnica e gestione conosciute
- Filiera costruita
- Mercato favorevole

Modello pioppo silvoarabile

La struttura di appoggio del filare è la RETE DI SCOLINE

Pioppo: protagonista dei sistemi AF di pianura

Modello pioppo silvoarabile

- Significativa potenzialità di estensione a tutti gli areali con sistemazione alla ferrarese piana
- Bassa densità → 40-50 piante/ha
- Modello base per implementazione di design più complessi

Partecipanza di Nonantola - (MO)

Azienda pilota Sasse Rami - (RO)

Azienda Casaria - (PD)

Sperimentazioni con pioppo in Veneto

alley-cropping

Azienda pilota e dimostrativa Sasse Rami di Veneto Agricoltura - Ceregnano (RO)

vs. pioppeto

Principali linee di ricerca:

Accrescimenti del pioppo

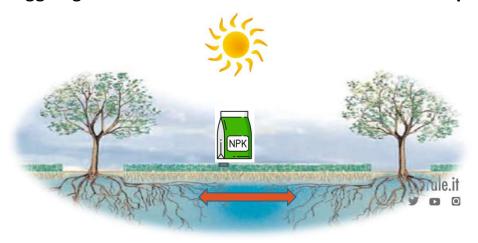
Screening di cloni MSA

Tecnica colturale

Microclima

Colture

Suolo

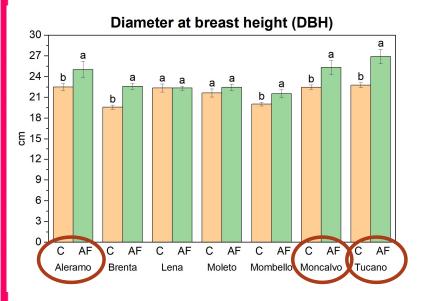


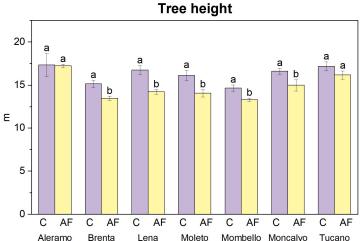
Qualità legno

Risultati: fenologia fogliare e accrescimenti

Nel pioppo coltivato in filare agroforestale osserviamo:

- Ritardo nella fenologia fogliare (fino a 2 settimane)
- Incremento diametrico superiore (fino a +20% vs. C)
- Coefficiente di snellezza (altezza/diametro) inferiore
- Accrescimenti elevati anche oltre il 5°-6° anno
- Raggiungimento del diametro commerciale 2-3 anni prima



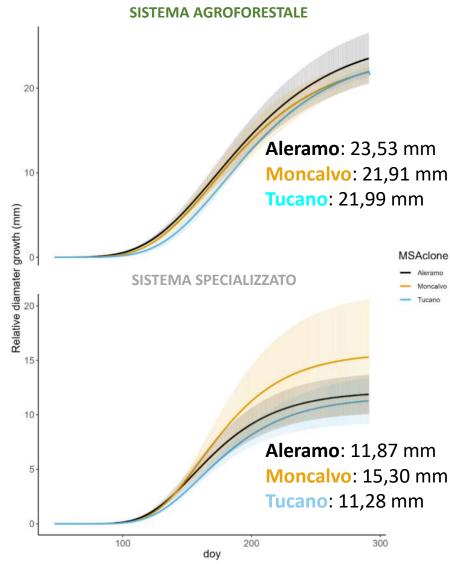


Piotto et al., 2023. Phenology and radial growth of poplars in wide alley agroforestry systems and the effect on yield of annual intercrops in the first four years of tree age. **Agriculture, Ecosystems & Environment**

Risultati: variabilità tra i diversi cloni

- Quali sono i cloni di pioppo più adatti ai sistemi alley-cropping?
- Quali sono i key traits di adattabilità?

Caratteristiche chiave per s. silvoarabile:


- Accrescimenti
- Ovalizzazione
- Drittezza del fusto
- Qualità del legno
- Fenologia
- Permeabilità della chioma
- Rastremazione
- Tolleranza allo stress idrico

Risultati: accrescimento radiale

- Accrescimenti radiali più che doppi in AF vs. C
- No differenze accrescimento radiale tra i cloni nello stesso sistema
- Ritardo del massimo della crescita radiale (+16 giorni) e del punto di fine crescita (+30 giorni) in AF vs. C

Risultati: tecnica colturale

Gestione degli accrescimenti

Maggior proliferazione di ramificazioni laterali:

- → 2 potature/anno
- → piattaforma nei primi anni, poi da terra

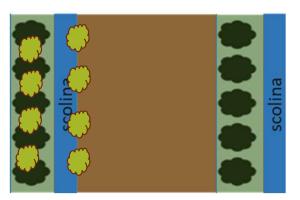
Invernale

Estiva

RETERURALE NAZIONALE 20142020

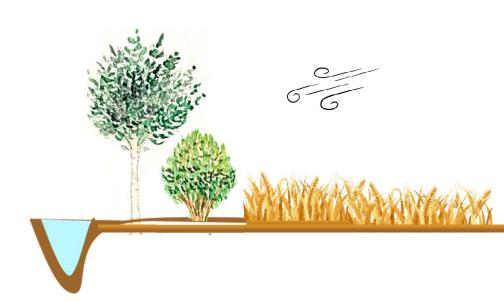
I-214 vs. cloni MSA

- Tecniche di potatura
- Difesa fitosanitaria



Taglio e re-impianto

- Operazioni di taglio e esbosco
- Triturazione delle ceppaie
- Re-impianto (tra una pianta e l'altra o dall'altro lato della scolina)



Risultati: opportunità per il futuro

doppio filare

specie accompagnatorie

Risultati: effetti sulle colture agrarie

- Elevata plasticità morfo-fisiologica:
 - Effetto stay-green
 - Incremento area foglie / area culmi
- Rese non calano (a volte incrementi!)
- Incrementi di proteina
- Incrementi di macro e micro-elementi

Colture estive

- Plasticità morfo-fisioloigica più contenuta:
- Rese calano nei primi 4-5m (fino a -40%)
- Incrementi di qualità (es. proteine e isoflavoni in soia, proteine e grassi in mais), ma che non reterurale.it compensano cali di resa

Variazioni tra specie e varietà/ibridi

Risultati: scelta dell'avicendamento

Anni 1-4

<u>Autunno-</u> <u>vernine</u>: frumento

Estive: Mais, girasole barbabietola **Anni 5-7**

<u>Autunno-</u> <u>vernine</u>: Orzo, triticale, segale

Estive: Soia, sorgo, barbabietola Anni 8-10

Foraggere graminacee e/o leguminose poliennali: es. erbaio di erba medica Anno 8-10

Risultati: opportunità per il futuro

Possibile scelta di gestione: diversificare le produzioni nell'interfilare, creando diverse fasce di coltivazione a seconda dell'entità delle interazioni con l'albero (ombra e acqua)

Fascia 1: colture/varietà con elevata tolleranza all'ombra

Fascia 2: colture/varietà con limitata tolleranza all'ombra; si può gestire come appezzamento in pieno sole

Diversificare:

- dall'anno di impianto
- dal momento in cui si intensifica la competizione

Risultati: screening varietale


→ varietà adatte ai sistemi agroforestali

- Variabilità genetica?
- Key traits?

Ombreggiamento artificiale con diversi materiali

Azienda «L. Toniolo» - UNIPD

In campo con l'ombreggiamento naturale degli alberi

Azienda Sasse Rami - Veneto Agricoltura

240

200

160

120

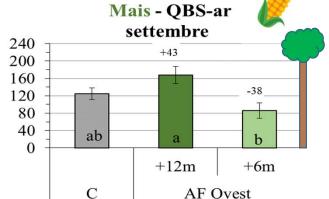
80

40

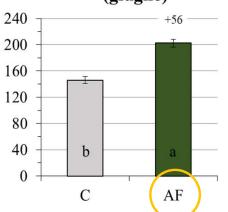
Risultati: fertilità biologica del suolo

Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto

Indice della qualità biologica **QBS-ar** (artropodi, dati ARPAV)


+6m

AF Ovest


-19

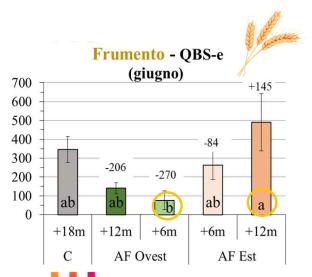
+12m

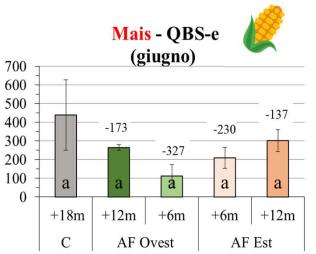
Pioppo - QBS-ar (giugno) 240

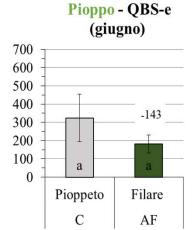
Frumento: QBS-ar aumenta avvicinandosi al filare

Mais: QBS-e più elevato a +12m dal filare

Pioppo: più artropodi lungo il filare agroforestale vs. pioppeto







Risultati: fertilità biologica del suolo

• Indice della qualità biologica QBS-e (earthworms)

- <u>Colture agrarie</u>: avvicinandosi al filare <u>n° lombrichi cala</u> (n.s.)
- <u>Pioppo</u>: meno lombrichi in AF rispetto al pioppeto
- Abbondanza lombrichi correlata all'umidità nel suolo

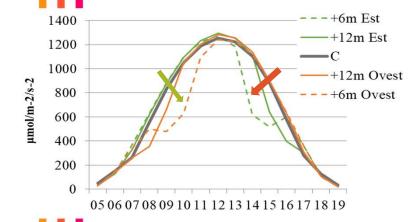
Considerazioni conclusive:

- Modello SA con pioppo facilmente replicabile in terreni pianeggianti vocati
- Resilienza al cambiamento climatico e stock di C
- Screening di specie e varietà adatte

Sfide future

- Effetti sulla qualità del legno
- Ottimizzazione delle tecniche
- Valutazione dei vantaggi di un doppio filare
- Analisi finanziaria ed economica
- Trasferimento delle conoscenze

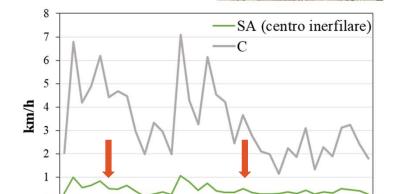
Grazie per l'attenzione



S. silvoarabile è più resiliente al cambiamento climatico

Ombreggiamento

Radiazione fotosinteticamente attiva (PAR)

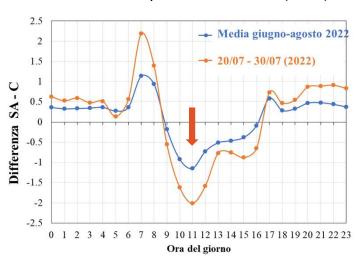

-5% PAR a +12m dal filare -10% PAR a +6m dal filare

Frangivento

Velocità del vento

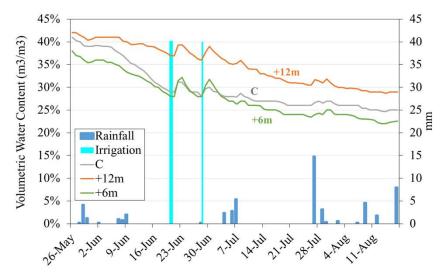
-85% velocità del vento

20-lug
22-lug
24-lug
26-lug
30-lug
01-ago
05-ago
07-ago
09-ago
11-ago
11-ago
11-ago
11-ago
21-ago



S. silvoarabile è più **resiliente** al cambiamento climatico?

Mitigazione temperature


Differenza temperatura dell'aria (SA-C)

- Buffer della temperatura media dell'aria
- T°C inferiori dalle 9 alle 16 (fino a -2 °C)

Conservazione/competizione per l'acqua nel suolo

Contenuto volumetrico di acqua nel suolo (m3/m3)

- Competizione in prossimità del filare (+6m)
- Maggiore umidità a +12m vs. C

