

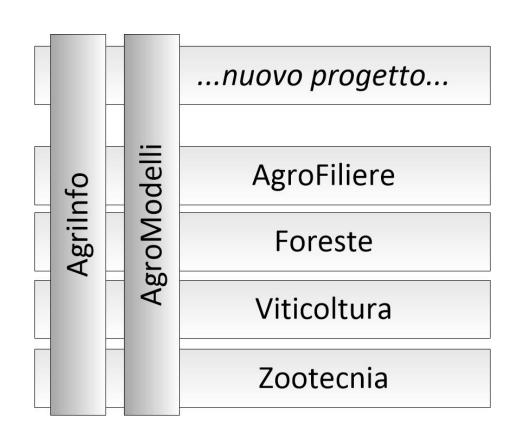
Il progetto Agricoltura Digitale

Marcello Donatelli Coordinatore del progetto

con la collaborazione di:

Fabio Abeni

Paolo Menesatti


Nicola Puletti

Paolo Storchi

Il progetto

- Il progetto AgriDigit è costituito da progetti specializzati su settori produttivi e da progetti trasversali per fornire infrastruttura modellistica e informatica
- Finanziato dal MASAF, con durata 2019-2024
- Nasce nel quadro della riorganizzazione in CREA della rete degli Istituti di Ricerca e Sperimentazione del Ministero
- Impegna strutture di ricerca CREA

- Sviluppo di risorse dati e sistematizzazione di quelle esistenti nel cloud, per la realizzazione di cartografie relative al territorio agricolo italiano;
- Calibrazione di sistemi sensoristici e ottici per la costituzione di librerie informatiche georeferenziate;
- Sviluppo di modellistica per l'elaborazione di scenari previsionali e lo sviluppo di servizi di supporto alla gestione tecnica;
- Sperimentazione e adattamento degli strumenti e tecnologie dell'agricoltura di precisione alla realtà italiana;
- Progettazione e sviluppo strumenti informatici sul cloud per la gestione e lo sviluppo di attività del progetto, e per la realizzazione di casi pilota di erogazione e gestione dei servizi di agricoltura digitale.

Obiettivo fondamentale per il progetto AgriDigit è lo sviluppo di strumenti e metodologie, per i diversi portatori d'interesse nelle produzioni agricole.

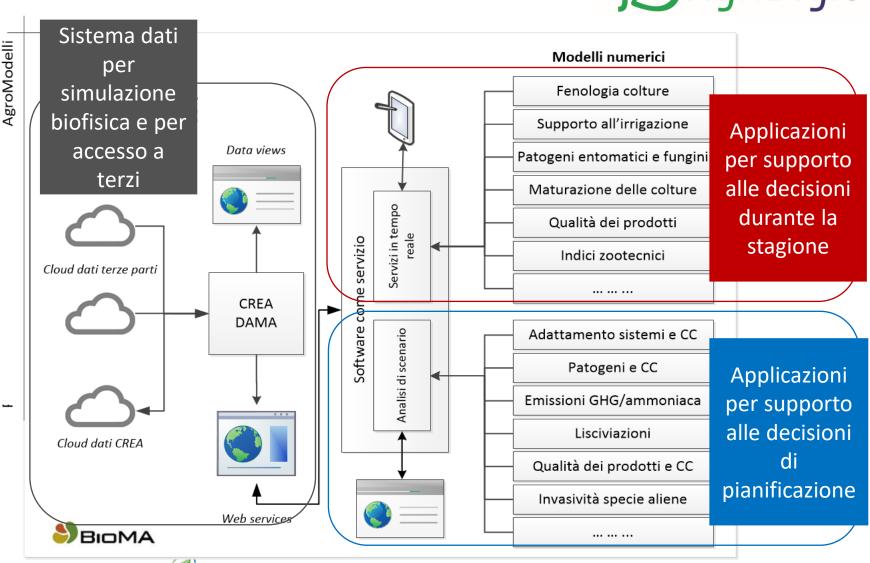
Il progetto AgroModelli

Risorse dati e modelli

Responsabile scientifico: Marcello Donatelli marcello.donatelli@crea.gov.it

AgroModelli - Razionale

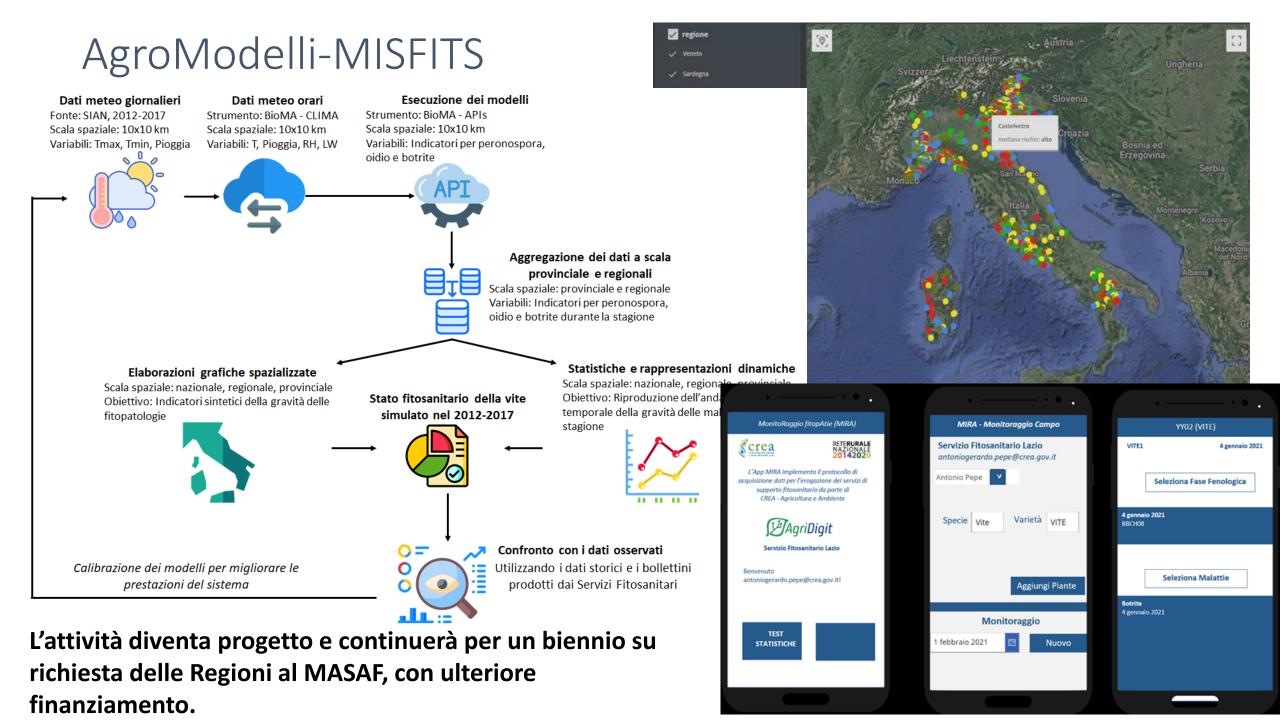
- Crescente richiesta di strumenti integrati per analisi sistemi produttivi agricoli anche in rapporto a scenari di variabilità climatica; attenzione su produzioni, impatto ambientale, patologie, qualità dei prodotti, agrotecnica.
- Risorse dati disponibili frammentate, incomplete, con qualità incerta, con accesso difficoltoso o nullo; copertura dati territorio nazionale frammentata; nuove risorse dati da valutare e utilizzare.
- Risorse modellistiche frammentate come strumenti, eterogenee, non estensibili, non integrabili.
- Strumenti diversi in uso da parte di Regioni, mancanza di strumenti per alcune.
- Mancanza di servizi cloud per permettere uso di risorse dati e di modellazione; disponibilità di casi studio interessante, ma scarsissima di strumenti riutilizzabili.



AgroModelli

- Sviluppare risorse dati
- Sviluppare risorse di modellazione
- Sviluppare servizi cloud (accesso a dati e modelli) con progetto Agrilnfo

Sviluppo strumenti riutilizzabili e casi applicativi d'uso. Non è un progetto per sviluppare solo casi puntuali.



Esempio attività: servizi di modelli fitopatologici per Regioni – attività MISFITS

- L'attività sta coinvolgendo 9 Regioni (Abruzzo, Basilicata, Emilia-Romagna, Liguria, Lombardia, Marche, Piemonte, Sardegna, Veneto, Lazio) che hanno aderito volontariamente.
- Sviluppo servizi cloud e applicazioni multi-modello
 - Il sistema e le sue componenti non richiedono la sostituzione di alcun sistema in atto nelle Regioni, cui offre alternative d'uso o anche re-implementazione di strumenti modellistici utilizzati da Regioni;
 - Sarà disponibile a livello operativo gratuitamente per soggetti pubblici;
 - Il sistema sarà disponibile anche come servizi cloud (micro-servizi e SaaS), incorporabili in strumenti di assistenza diversi e con interfacce utenti diverse.
- Contribuisce a condividere informazioni e capacità operativa tra i soggetti pubblici che operano nel settore

AgroModelli: eventi

Nella seconda parte del 2024, ad oggi, sono definite due giornate di lavoro indirizzate a portatori d'interesse, per dimostrazioni e anche su possibile riutilizzo di strumenti sviluppati:

- Servizi di modelli fitopatologici, indirizzato a Regioni e portatori d'interesse privati
- Emissioni di ammoniaca e gas ad effetto serra, indirizzato al mondo della ricerca

Il progetto AgroFiliere

Tecnologie digitali integrate per il rafforzamento sostenibile di produzioni e trasformazioni agroalimentari

Responsabile scientifico: Paolo Menesatti paolo.menesatti@crea.gov.it

AgroFiliere

Task 2.1 S. Ruggieri (**CREA-AA**) Sistemi evoluti per la gestione agronomica e agroambientale

Task 2.2 C. Costa (**CREA-IT**) - *IMAGING applicato* a sensoristica prossimale ed integrazioni satellitari

WP2 Sistemi sensoristici e digitali per l'AdP e lo smartfarming WP Leader: C. Costa (CREA-IT) Task 2.3 F. Pallottino
(CREA-IT) SIMULAZIONE
applicazioni di
agricoltura di precisione

TECNOLOGIE

WP3 Sistemi meccatronici e digitali per l'AdP WP Leader: C. Bisaglia (CREA-IT) Task 3.1 M. Cutini
(CREA-IT) - Sistemi e
applicazioni
meccatroniche e di
interfaccia digitale
sulle trattrici e
semoventi e per la
robotica in campo

Task 3.2 A. Assirelli (**CREA-IT**) Sistemi e applicazioni sulle macchine operatrici per le principali operazioni colturali

mappatura Modellistica prossimale biofisica e remoto (AA) suoli (AA) Sviluppo software (AA) Imaging (IT) Aree competenza Sensoristica fisica, reti LoRA, HW IoT (IT) Meccatronica Agromeccanica (IT) di precisione (IT) Filiere produzione e trasformazione (OF, OFA, CI, IT) Supply chain e tracciabilità Blockchain (OF, OFA, CI, IT) (IT-AA)

Task 4.1 C. Pane (**CREA-OF**) - Applicazioni digitali e meccatroniche avanzate per le filiere orticole e florovivaistiche di qualità

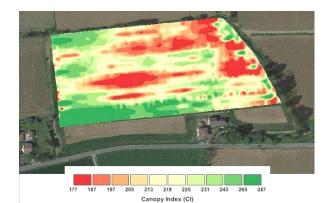
Task 4.2 N.
Pecchioni (CREA-CI) - Applicazioni
digitali e
meccatroniche
avanzate per la
filiera cerealicola e
altre colture da
granella

PRODUZIONI

WP4 Sistemi di precisione e digitali per agrofiliere di qualità WP Leader: D. Massa (CREA-OF)

Task 5.2 N.
Timpanaro
(CREA-OFA) Tracciabilità
integrata e
blockchain per la
tutela della
qualità della
filiera agrumicola

TRASFORMAZIONI


WP5 Integrazioni digitali multiscala per le trasformazioni agroalimentari WP Leader: T. Cattaneo (CREA-IT)

Task 5.1 T. Cattaneo (**CREA-IT**) - Sensors and digital data networking per qualità nei processi di trasformazione agroalimentare

AgroFiliere: Obiettivi generali

- 🚫 Sviluppo di macchine e tecnologie di precisione per la produzione agricola in termini di *precision farming* e *smart farming* (sensoristica applicata);
- Implementazione di sistemi digitali per le trasformazioni agroalimentari in termini di qualità, tracciabilità e sicurezza e analisi di sistemi integrati di informazione da remoto ad accesso libero
- 🦳 Strumenti informatici a supporto del trasferimento dei risultati (laboratori e seminari dimostrativi; focus group; web open-system di informazione produttiva/qualitativa e tracciabilità/sicurezza);
- Apporto di contributi innovativi per contribuire all'evoluzione digitale e meccatronica del settore

Circa 20 news/eventi

Circa 50 pubblicazioni tra:

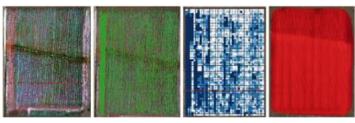
- Internazionali IF
- Nazionali divulgative
- Atti di convegno

1 Brevetto

Infrastrutture rilevanti per Agricoltura di Precisione

- Simulatore SIMAGRI
- ☐ 2 hub tecnologici (aziende): **MONTEROTONDO e TREVIGLIO**
- ☐ Sensori, droni e robot

RISULTATI


AgroFiliere WP2: Sistemi sensoristici e digitali per l'AdP e lo smartfarming

MAgriDigit

Task 2.1 Sistemi evoluti per la gestione agronomica e agroambientale Leader: S. Ruggieri (CREA-AA)

- Realizzazione di robot multisensore per il monitoraggio di suolo e colture: determinazione sito-specifica dello stato vegetativo
- ✓ Aeromobili a pilotaggio remoto
- ✓ Piattaforma mobile robotizzata
- ✓ Linear ranger
- Proximal e remote sensing per l'irrigazione di precisione: UAV legger per monitorare stato colture, biomassa e produzione.

CAMERE MULTISPETTRALI E TERMICHE CON TECNICHE DI IMAGE ANALYSIS

Software: Sviluppo di modelli di irrigazione di precisione basati su algoritmi di AI e modelli di stima basati su immagini da APR per Irrigatori Dinamici

Impianto irriguo sperimentale

• Impiego di un sistema DSS per l'irrigazione di precisione di un pescheto: riduzione notevole di Water Footprint rispetto a sistema di irrigazione a calendario

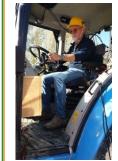
Task 2.2 IMAGING applicata a sensoristica prossimale ed integrazioni satellitari Leader: C. Costa (CREA-IT)

• Applicazione di sensori e metodologie opto-elettroniche imaging-based (visibile, NIR, termico) per monitoraggio prossimale dello stato vegetativo, fitosanitario, maturazione e qualità dei prodotti in campo

Sviluppo di algoritmi per calibrazione onthe-go applicata a sensori RGB di campo

• Sviluppo di un **modello multivariato previsionale** da dati meteoclimatici e rilievi fitopatologici per la prevenzione anticipata dell'oidio sulla vite riducendo i trattamenti

• Applicazione dell'AP nella fase di impianto di un noccioleto: riduzione dei costi durante l'intero ciclo produttivo


- ✓ Piattaforma d'integrazione di dati da satelliti ottici e radar con informazioni sul suolo raccolte mediante app (Software FertPlan R e FertPlanSpatial R)
- ✓ Mappe di prescrizione in chiave agro-ecologica

Task 2.3 SIMULAZIONE applicazioni di agricoltura di precisione Leader: F. Pallottino (CREA-IT)

- **SimAgri:** simulatore fisico-virtuale di un trattore agricolo configurato per eseguire lavorazioni di agricoltura di precisione
 - Acquisizione dati da molteplici piattaforme
 - Uploading di mappe di prescrizione;
 - Sensori on-the-go per applicazioni
 VRT in copertura;
 - Validazione dello spandiconcime

 Sistema ANC efficace nel ridurre il livello sonoro nel campo delle basse frequenze

RISULTATI

AgroFiliere WP3: Sistemi meccatronici e digitali per l'AdP

Task 3.1 Sistemi e applicazioni meccatroniche e di interfaccia digitale sulle trattrici e semoventi e per la robotica in campo

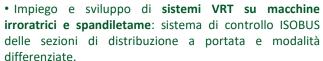
Leader: M. Cutini (CREA-IT)

• Realizzazione di un **sensore iperspettrale puntuale** pilotato da un single board PC (Raspberry), programmabile in ROS per mapping ed azioni real-time in pieno campo e su colture protette

Case study specifico: controllo selettivo di patologie di fresh cut salads in serra

• Realizzazione di una **Phenomobile elettrica** per applicazioni in campo con capacità scavallante di 1.5m ed avanzamento a velocità controllata per 8-10 ore di autonomia.

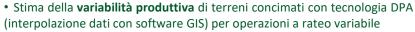
Dotata di camera multispettrale MAIA S2 e braccio Gimbal attivo antivibrazione



- Utilizzo di droni ultraleggeri low-cost con camere RGB per **phenotyping varietale** su parcelle di grano e orzo, sulla base di crescita e colore in specifici stadi fenologici
- Utilizzo di droni medio-pesanti con camere multispettrali per il phenotyping: Artificial Neural Network per la stima anticipata di fioritura, malattie e resa
- Analisi dei vantaggi di un cantiere di meccanizzazione 4.0 (geo-posizionamento, auto-guida ed operatrice ISOBUS) rispetto ad un cantiere tradizionale per le operazioni di concimazione, diserbo e semina.

• Rilevazione simultanea di Canopy Index, temperatura e umidità relativa su olivo, frumento, kiwi, nocciolo e patate tramite trattrice equipaggiata con sensore MECS-CROP

 Sviluppo sistema di guida innovativo per Rover/Drone per riconoscimento e controllo delle malerbe: tecnologie vSLAM e LiDAR. Implementazione di algoritmi di localizzazione, mapping, navigazione e path planning.


• Realizzazione di un'area sensibilizzata con sensoristica dedicata: efficiente per monitorare allevamenti di bachi da seta e l'essicazione dei bozzoli

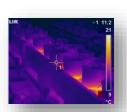
• Semina di precisione con guida assistita VS semina tradizionale con guida manuale: analisi sostenibilità economica e ambientale

14

AgroFiliere WP4: Sistemi di precisione e digitali per agrofiliere di qualità

Task 4.1 Applicazioni digitali e meccatroniche avanzate per le filiere orticole e florovivaistiche di qualità

Leader: C. Pane (CREA-OF)


• Supporto alla nutrizione di spinacio in attraverso misure **spettroradiometriche** con messa a punto di indici di vegetazione per la gestione razionale della nutrizione azotata

• Supporto alla difesa di ortaggi baby leaf (es. rucola) con Imaging termico iperspettrale, misure spettroradiometro e monitoraggio dati ambientali

- Supporto alla difesa di rosa (coltura protetta e in vaso pien'aria) attraverso la messa a punto di sistemi di alert per oidio e botrite e modelling
- ➤ Monitoraggio microclimatico intra ed extra-canopy
- ➤ Modelli calibrati sull'analisi molecolare

· Sistemi evoluti per la valutazione dello stato fitopatologico delle colture attraverso l'analisi delle immagini termografiche

Task 4.2 Applicazioni digitali e meccatroniche avanzate per la filiera cerealicola e altre colture da granella

Leader: N. Pecchioni (CREA-CI)

Piattaforma di *Field Phenomics* per il miglioramento genetico dei cereali, il controllo sito specifico e la tracciabilità:

- > sviluppo di metodi/applicazione di hardware
- > UAV con sensori RGB e Multispettrali

COPERTURA DEL SUOLO

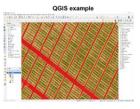
Fenotipizzazione e trattamenti per il controllo di erbe infestanti e malattie

G1

PREVISIONE DELLA FENOLOGIA DEL GRANO

Stima dell'altezza della pianta ed estrazione di indici vegetativi (VI) – Software: R e QGIS

- > Previsione fenologia delle piante con un modello di processo gaussiano per le serie temporali
 - · Agisoft Metashape


 - · High quality models building

AgroFiliere WP5: Integrazioni digitali multiscala per trasformaz agroalimentari

Task 5.1 Sensors and digital data networking per qualità nei processi di trasformazione agroalimentare

Leader: T. Cattaneo (CREA-IT)

- Sviluppo di sensoristica NIR di filiera con approccio olistico di Aquafotomica:
 - ➤ Mini-impianti di disidratazione solare per ananas, melanzana e mela;
 - > Trasposizione di scala su impianto pilota per cipolla e melone;
 - > Trasposizione in contesto reale (mele)

- Sviluppo di sensoristica combinata per l'integrazione digitale della filiera di IV gamma:
 - ➤ Valutazione microbiologica e qualitativa su rucola tramite sensori RedEye, NIR, E-nose e fluorescenza;
 - ➤ Identificazione stadio di maturazione di meloni per IV gamma (ready to use) mediante misure TRS

• Uso di una potenziale piattaforma logistica virtuale (infotracing e blockchain) per l'ottimizzazione della gestione post-raccolta e della logistica di distribuzione dei prodotti dal fresco alla IV gamma

Task 5.2 Tracciabilità integrata e blockchain per la tutela della qualità della filiera agrumicola Leader: N. Timpanaro (CREA-OFA)

Analisi della filiera dell'arancia rossa di Sicilia IGP ed individuazione dei blocchi

➤ Monitoraggio della temperatura e umidità: sia nelle celle di condizionamento che durante il trasporto e lo stoccaggio, fino all'arrivo del prodotto nei punti vendita (https://creaitoranfrizer.westeurope.cloudapp.azure.com:1880/ui)

Sviluppo di App per la gestione in azienda degli ordini di raccolta, dei parametri qualitativi dei frutti in ingresso e del prodotto in uscita (confezionato) ed esportazione i dati.

- ➤ Sviluppo e applicazione di tecnologie derivate dalle piattaforme blockchain, che mantengono gli aspetti più rilevanti come immutabilità del dato, applicazione degli smart contract e condivisione sicura dei dati, senza i vincoli dell'infrastruttura classica e con costi inferiori.
- Caratterizzazione chimica delle arance rosse di Sicilia IGP

Realizzazione di un'etichetta informativa tramite la quale il consumatore potrà risalire ai contenuti nutrizionali, salutistici e sensoriali del prodotto acquistato (realizzazione del QR code in etichetta).

Il progetto Selvicoltura

Basi dati, raccolta di precisione e tracciabilità legname e la logistica

Responsabile scientifico: Nicola Puletti nicola.puletti@crea.gov.it

Struttura generale

WP 2

Basi informative e sistemi di supporto decisionale standardizzati

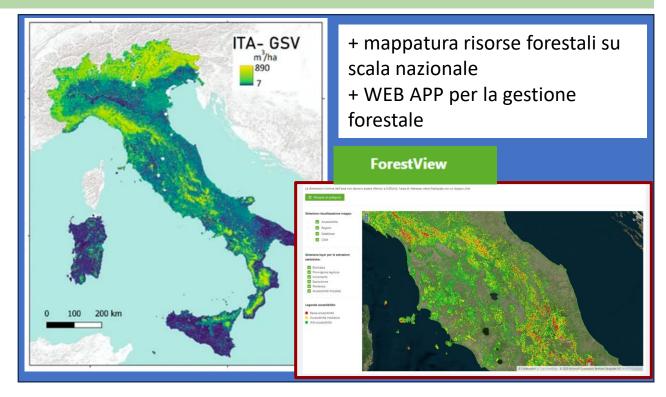
CREA FL

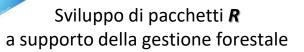
Innovazione per dendrometria e assestamento forestale

nuove tavole di cubatura ottenute da rilievo con sistemi laser TLS

R Studio

Volume tables and terrestrial laser scanning: a technology innovation supporting forest mensuration


Nicola Puletti (1), Matteo Guasti (1), Simone Innocenti (1) ☑, Roberto Scotti (2)


Forest@ - Journal of Silviculture and Forest Ecology, Volume 20, Pages 61-66 (2023) Published: Jul 24, 2023 - Copyright @ 2023 SISEF

Task 2.1 - Sistemi per la stima spazializzata di attributi forestali, mappa del volume legnoso e dell'incremento

Task 2.2 - Modellizzazione dei servizi ecosistemici ed utilizzo di sistemi aerei a pilotaggio remoto per inventariazione

Task 2.3 - Modellazione di sistemi di gestione basati su sistemi di supporto alle decisioni (DSS)

Struttura generale

WP2

Basi informative e sistemi di supporto decisionale standardizzati

CREA FL

WP3

Precision forest harvesting

CREAIT

WP4

RFiD per la tracciabilità del legname e la logistica

CREA IT+PB

App installata su ricevitore GNSS per il monitoraggio dei carichi esboscati

Task 3 - Sviluppo e validazione di sistemi di supporto alla raccolta del materiale legnoso in bosco e nelle piantagioni da legno

posizionamento dei sensori di pesatura "flexiforce A502" sul telaio della macchina forestale forwarder

App dedicata per:

- + Monitoraggio cantiere forestale
- + Mappatura aree di carico e scarico del legname

Struttura generale

WP 2

Basi informative e sistemi di supporto decisionale standardizzati

CREA FL

WP3

Precision forest harvesting

CREA IT

WP4

RFiD per la tracciabilità del legname e la logistica

CREA IT+PB

Task 4.1 - Sviluppo e test di tecnologie elettronico-informatiche

Task 4.2 - Analisi della sostenibilità economica dell'applicazione dei sistemi di tracciabilità dei prodotti legnosi

Dedrometro digitale con App dedicata

Il progetto Viticoltura - SUVISA

Strati informativi territoriali, modellistica, firme spettrali, qualità, sostenibilità e tracciabilità prodotto

Responsabile scientifico: Paolo Storchi paolo.storchi@crea.gov.it

Esempio di Bilancio idrico mensile su base fenologica

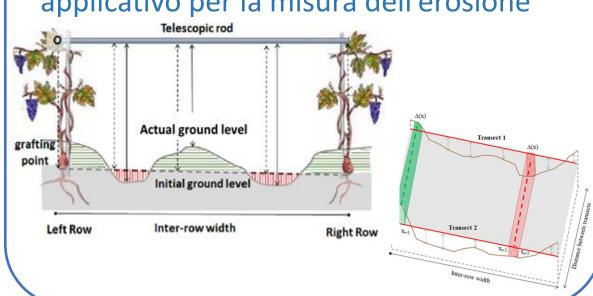
AgriDigit

Python + interfaccia grafica (desktop/mobile)

Pre-impianto

Vineyard	Rootstocks	Erosion Rate (Mg/ha year)	Max lenght (m)	Annual water stress	Runoff and stagnation risk
1	420A, Fercal, M1, M3, M4	27,98	53,4	Negligible	Moderate runoff
2	420A, 101.14, Gravesac, Fercal, M1, M3, M4	7,38	100,0	Moderate	Low runoff

Dati di input Climatici Morfologici


Pedologici

Produzione: effetto della gestione

Managament	Monthly water stress								Annual water	Runoff and	Compaction	
Management	Α	М	June <15g	June >15g	July	Α	S	0	N	stress	stagnation risk	risk
Tillage	N	N	N	N	Н	N	N	N	N	Negligible	Negligible	Moderate
Grass-cover	N	N	N	M	VH	N	N	N	N	Moderate	Negligible	Negligible
Green-manure	N	N	N	N	VH	N	N	N	N	Negligible	Negligible	Negligible

ISUMmate

applicativo per la misura dell'erosione

Gestione della fertilità del vigneto

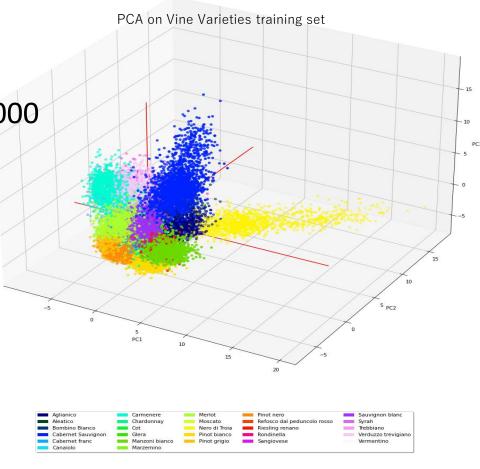
Python + interfaccia grafica

Pre-impianto

- Stima del fabbisogno di unità fertilizzanti per la fertilizzazione di fondo (CO, K, Mg, P).

Produzione: effetto della gestione

- Stima della disponibilità e del fabbisogno di unità fertilizzanti di N, K e P su base medio-annua


Modello per il riconoscimento varietale in campo

 E' stato costituito un dataset contenente 27 fra le principali varietà italiane e internazionali (circa 30.000 foto) in 3 distinte zone d'Italia

Collaborazione con progetto Agrilnfo

Viticoltura: eventi

Nella seconda parte del 2024, ad oggi, è definita una giornata di lavoro indirizzate a portatori d'interesse, per dimostrazioni e anche su possibile riutilizzo di strumenti sviluppati:

Portatori d'interesse primari:

Società fornitrici di servizi digitali per l'agricoltura

Portatori d'interesse secondari:

- Organi di controllo e certificazione
- Società di servizi
- Aziende agricole

Il progetto Zootecnia - PLF4Milk

Tecnologie digitali nella filiera del latte bovino e bufalino

Responsabile scientifico: Fabio Abeni fabiopalmiro.abeni@crea.gov.it

Struttura del progetto PLF4Milk

WP 2 – Zootecnia di precisione nella bovina da latte

WP 3 – Sviluppo di un sensore per il riconoscimento dei suoni nei bovini

WP 4 – Zootecnia di precisione nella specie bufalina

Task 1 Completamento del sistema sperimentale dell'azienda Baroncina del CREA (Resp. Abeni)

Task 2 Ottimizzazione e/o automazione della gestione aziendale (Resp. Abeni)

Task 3 Gestione ed analisi integrata dei dati (Resp. Abeni)

Task 4 Valutazione casearia dei vantaggi della gestione integrata aziendale con zootecnia di precisione (Resp. Giraffa)

Task 1 Identificazione ed interpretazione dei richiami e delle vocalizzazioni (Resp. Petrera)

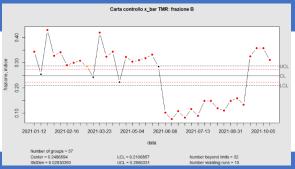
Task 2 Sviluppo di sistemi di gestione dati in funzione dell'adozione di retroazioni (Resp. Abeni)

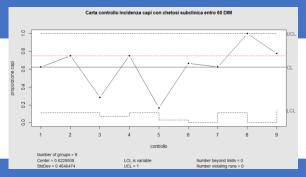
Task 1 Produzione, comportamento e benessere di bufale in lattazione (Resp. Meo Zilio)

Task 2 Studio dell'emissione di metano (Resp. Meo Zilio)

Zootecnia WP2 di precisione nella bovina

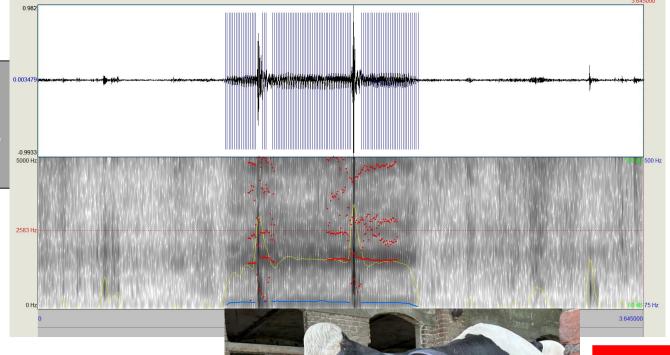





da latte

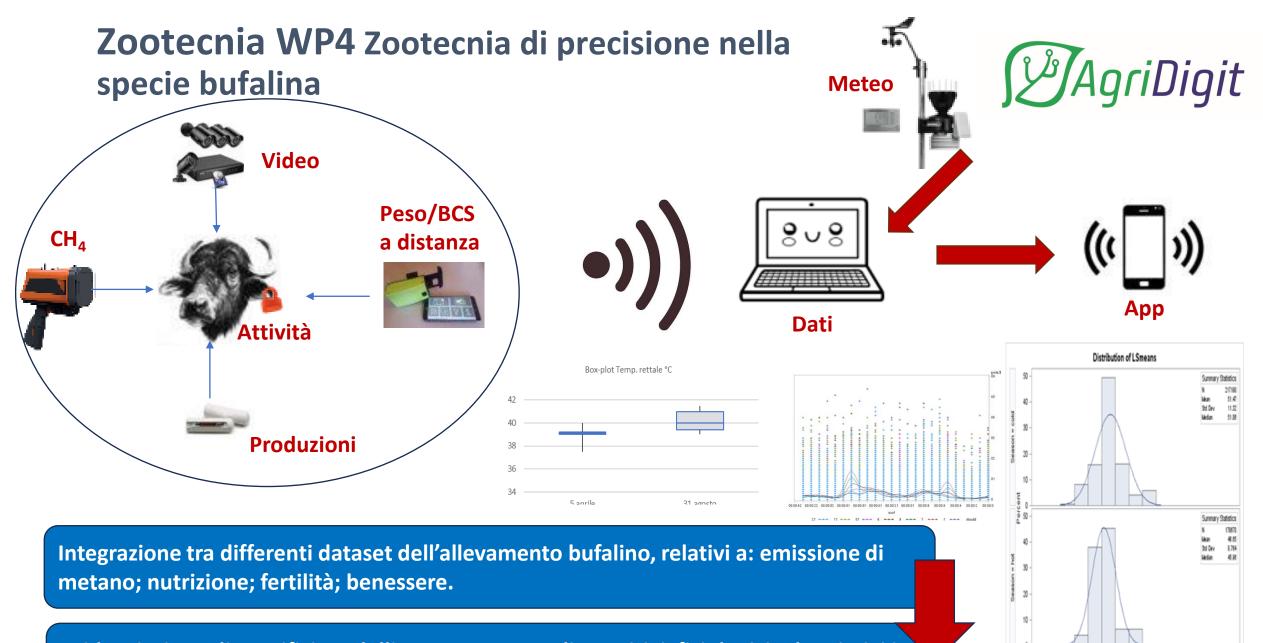
Integrazione tra differenti fonti dati tipiche dell'allevamento bovino da latte; in particolare: sistema automatizzato alimentazione; sistema controllo attività/ruminazione bovine; sistema mungitura con diagnostica riproduttiva e nutrizionale

Generazione KPI e relative carte di controllo di processo


Gestione integrata dei dati dall'alimento zootecnico, ai suoi tempi e modalità di preparazione e distribuzione in relazione al benessere animale (soprattutto durante stress termico estivo) e controllo ricadute su caseificazione tipo Grana

Zootecnia WP3 Sviluppo di un sensore per il riconoscimento dei suoni nei bovini

Caratterizzazione audiometrica delle vocalizzazioni preparto della bovina e associazione con i tempi e le caratteristiche di espletamento del parto stesso



Realizzazione di un database con le caratteristiche delle vocalizzazioni preparto e delle relative caratteristiche dell'espletamento del parto stesso

microfono

Evidenziazione di specifici modelli comportamentali, nutritivi, fisiologici ed emissivi in funzione delle circostanze meteoclimatiche

Zootecnia: eventi

Nella seconda parte del 2024, ad oggi, è definita una giornata di lavoro indirizzate a portatori d'interesse, per dimostrazioni e anche su possibile riutilizzo di strumenti sviluppati:

Parte 1. Trasferibilità della conoscenza PLF4Milk AgriDigit negli allevamenti bovini e bufalini L'interazione tra le fonti dati aziendali tradizionali e da nuovi sensori La valorizzazione dei dati aziendali in interazione con i controlli della produttività Le possibili interazioni con il progetto LEO Le nuove prospettive di fenotipizzazione dei ruminanti

Parte 2. Esperienze di trasferimento della conoscenza PLF4Milk AgriDigit nella progettualità dei Consorzi DOP e nell'industria del latte

L'approccio delle DOP L'approccio dei grandi gruppi industriali L'approccio della filiera bufalina

Il progetto Agrilnfo

Tecnologie software: persistenza dati, servizi cloud, piattaforma di modellazione, piattaforma per tracciabilità, applicazioni IA

Responsabile scientifico: Marcello Donatelli marcello.donatelli@crea.gov.it

La piattaforma BioMA

- Libreria C# di componenti per modellazione fenomeni agro-ambientali. The BioMA
- Implementazione di numerosi modelli noti in letteratura
- Utilizzata da JRC per Agri4Cast
- Consente la composizione di modelli e strategie
- Accorcia notevolmente i tempi di sviluppo di nuove soluzioni di modellazione.
- Deployment in ambiente serverless
- Prototipazione rapida di servizi basati su modelli

The BioMA platform components:

Abiotic stresses

Heat damage, Rice cold shocks, Lodging, extreme events (extreme heat and cold)

Biotic stresses

Generic air-borne diseases simulator (Diseases, Magarey), Generic soil-borne diseases growth (SBD) CornBorer simulator (MYMICS)

Weather libraries

AirTemperature, EvapoTranspiration, LeafWetness, SolarRadiation, Rainfall, Wind Climatic indices

Crop growth models

Generic crop simulators (Wofost, CropSyst, STICS), Rice (WARM) Sugarcane (CaneGro) Grain quality

Soil libraries

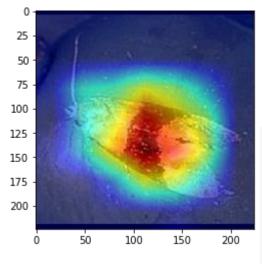
Soil water runoff and erosion (CN, Eurosem), Soil water redistribution (Cascading, FiniteDifferences) Soil surface & profile temperature, Pedotransfer functions (SoilPar)

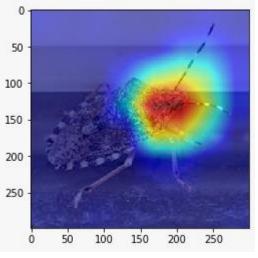
Agricultural management

Rule-based modelling (AgroManagement)

Chemicals

Chemicals dynamics (AgroChemicals)


https://en.wikipedia.org/wiki/BioMA



- Competenze nello sviluppo di sistemi di IA in ambiente Tensor Flow 2 per mettere rapidamente in produzione modelli
- Gestione l'intero processo:
 - Sviluppo protocollo raccolta dati
 - Implementazione e coordinamento campagne di raccolta dati
 - Verifica e pulizia dati
 - Sviluppo e training modello
 - Messa in produzione del modello su cluster in cloud
- Applicazioni di image recognition su razze api, varietà vite

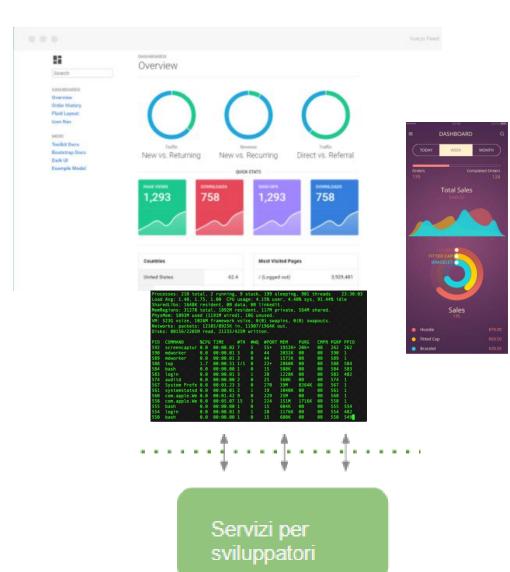
Monitoraggio del territorio con tecnologie IoT

- Esperienza nella gestione di dati da sensori di prossimità su dispositivi IoT.
 - Monitoraggio sistematico
 - Migliori previsioni
- Esempio: monitoraggio salute api su territorio nazionale
 - Sviluppo applicazione gestionale rete
 - Sviluppo specifica per dispositivi IoT
 - Accordi con fornitori tecnologie

Servizi per sviluppatori

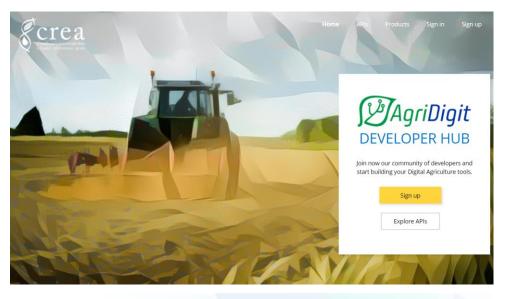
- Si tratta di servizi Web che incapsulano elementi discreti dei flussi di lavoro/informazione.
 - Il servizio finale viene costruito componendo diversi servizi per sviluppatori.
 - I nostri partner possono accedere a tali componenti

Motivazione:


- Lavoriamo con molte organizzazioni diverse
- Ogni organizzazione ha requisiti specifici

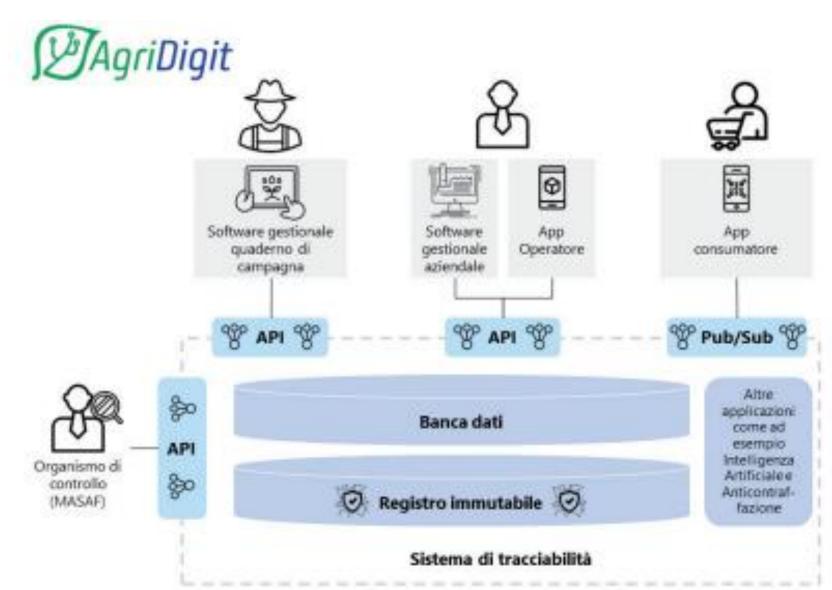
Benefici:

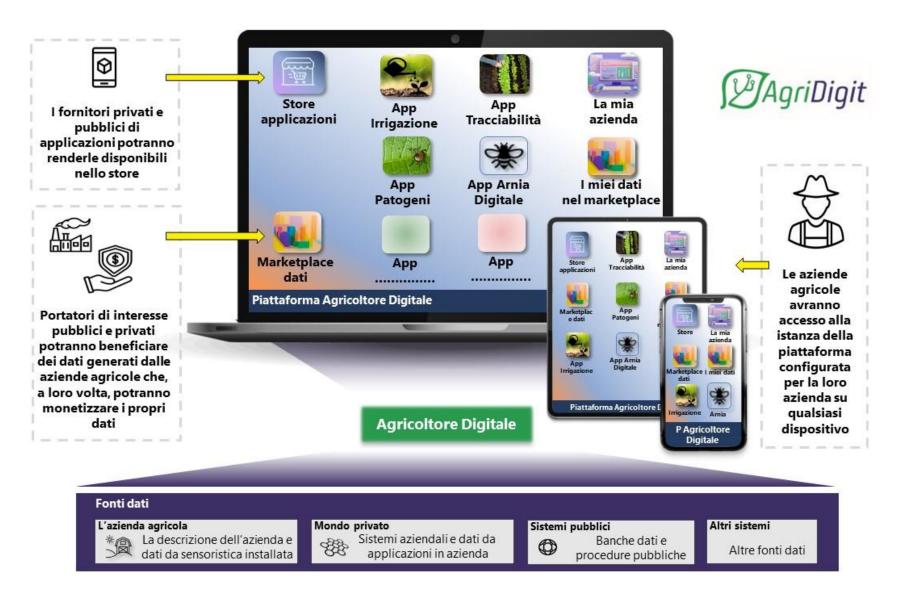
- Sviluppo di applicazioni verticali semplificato
- Possibilità per ogni soggetto di gestire autonomamente utenti e politiche



Portale servizi per sviluppatori

- I servizi sono distribuiti come API con chiave nominale
- La registrazione delle chiavi avviene tramite portali web dedicati
 - Uno per i progetti italiani
 - Uno per le iniziative europee
- La visibilità sui servizi è concessa sulla base di accordi e convenzioni.





Esempio: Agricoltore Digitale

