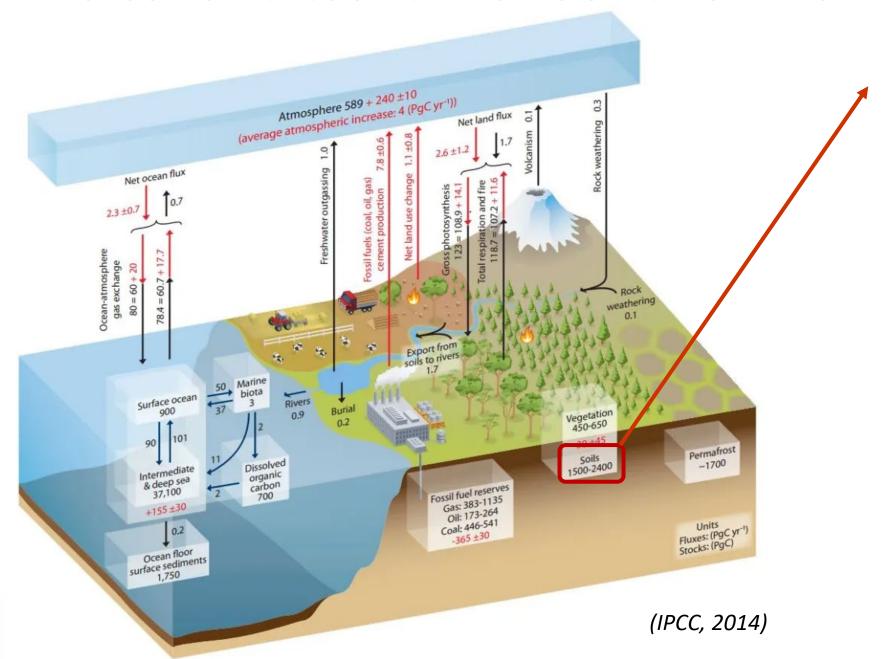
Il sequestro del Carbonio: mitigazione e adattamento ai cambiamenti climatici

Strategie gestionali per l'incremento del sequestro del carbonio, la mitigazione dei gas serra e la biodiversità dei sistemi agricoli: raccomandazioni a politici e decisori

Irene Criscuoli – CREA Centro di ricerca Politiche e Bio-economia

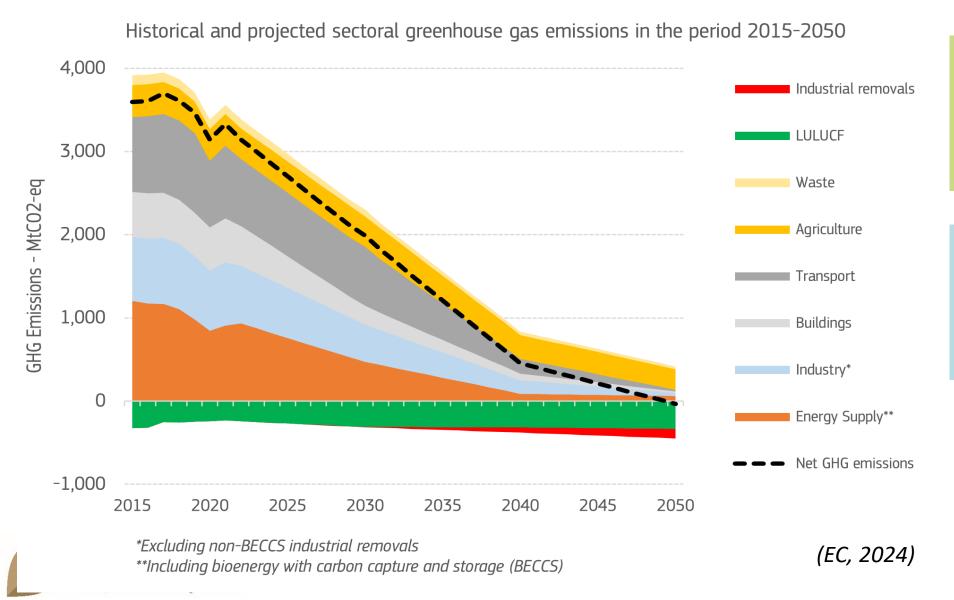
Convegno finale EJP SOIL - Coltivare il Futuro: Scienza, Politica e Innovazione per la Salute e la Fertilità dei Suoli Italiani Roma 4/12/2024



Il carbonio nei suoli e il cambiamento climatico

Nel suolo 1500 – 2400 PgC «SOC»

Mitigazione del cambiamento climatico:


- Almeno = SOC
- Possibilmente + SOC

+ 4‰ SOC

- → compensa l'aumento della CO₂ in atmosfera
 - + qualità del suolo -> sicurezza alimentare
- + adattamento ai cambiamenti climatici

(Rumpel et al., 2020)

Il SOC e il cambiamento climatico nella politica

Obiettivi UE:

- proposta 2040: -90%
 emissioni nette GHG risp.
 1990
- 2050: neutralità climatica
- RIDUZIONE EMISSIONI
- ASSORBIMENTI IN LULUCF: CARBON FARMING -310 mtCO₂e entro il 2030

Il SOC e il cambiamento climatico nella politica

2° anno EJP SOIL

Strategia dell'UE per il suolo per il 2030 (17.11.21)

3° anno EJP SOIL

Proposta di regolamento per la certificazione degli assorbimenti di carbonio in UE (30.11.22)

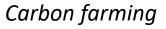
4° anno EJP SOIL

Proposta di direttiva europea per il monitoraggio e la resilienza del suolo (5.7.23)

Legge italiana n°41 art. 42 per registro dei crediti di carbonio e linee guida per certificazione (21.4.23)

5° anno EJP SOIL

Accordo alla Cop29 di Baku su mercato globale volontario crediti di carbonio (23.11.24)

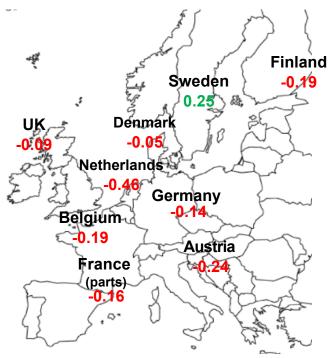


Assorbimenti di carbonio nel suolo e crediti di carbonio

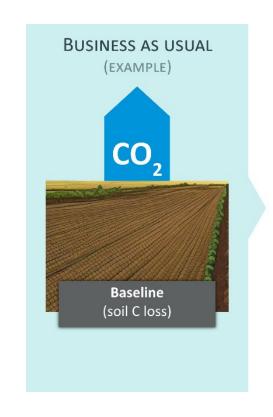
Certificati scambiabili sul mercato volontario del carbonio = 1 t CO₂eq

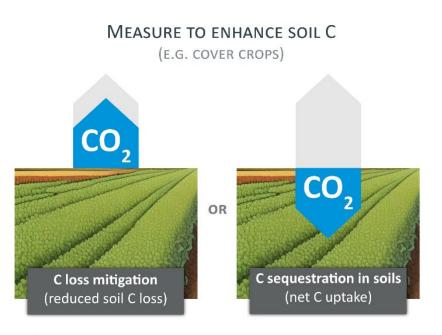
Maturati dopo dimostrazione dell'avvenuto assorbimento secondo metodologie di quantificazione approvate

Efficacia delle pratiche di Carbon farming


EJP SOIL has received funding from the European Union's Horizon 2020 research and innovation programme: Grant agreement No 862695

Assorbimento di C o riduzione delle perdite di C?

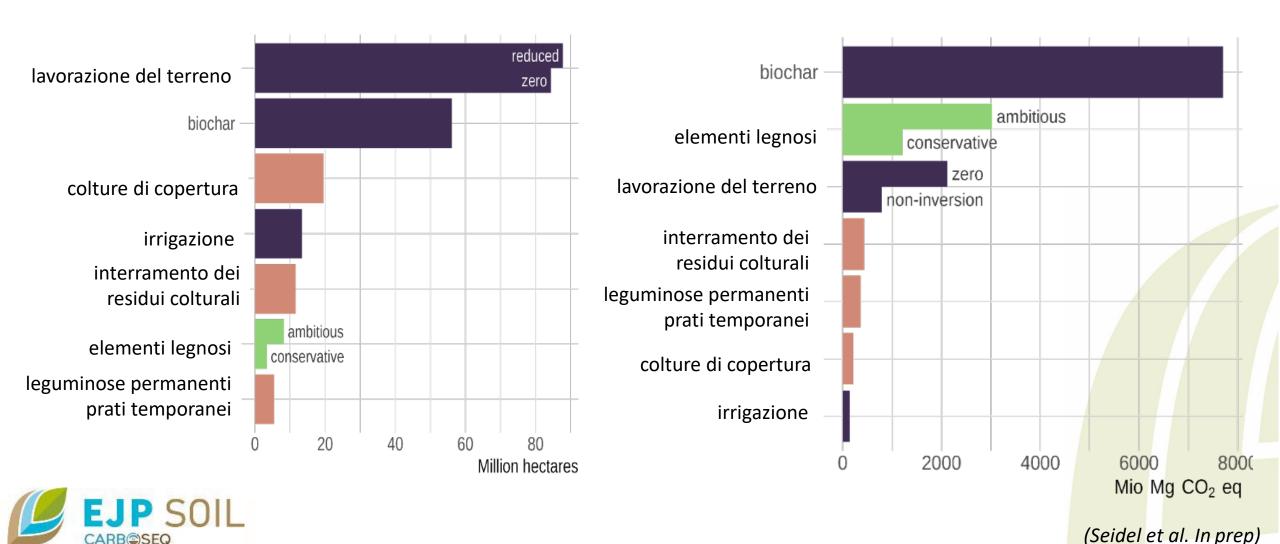

Variazione di SOC nei terreni agrari (t C/ha anno, valore misurato)



Fonte: Heikkinen et al. 2013, Poeplau et al. 2015, Taghizadeh-Toosi et al. 2014, Lettens et al. 2005, Knotters et al. 2022, Dersch and Böhm 1997, Höper 2021, Antoni et al., 2008, Don 2024.

-7.4 mln tC/anno da suoli agrari in EU:

- Deterioramento suoli
- Gestione non sostenibile (EC, 2021)



(Don et al. 2023, GCB)

Potenziale di assorbimento del SOC per pratica agricola

Pratiche validate in esperimenti di campo di lungo periodo in EU (1394 publications)

Fattibilità delle pratiche agricole

Es. Biochar:

NECESSARI: • 2.8 miliardi t biochar

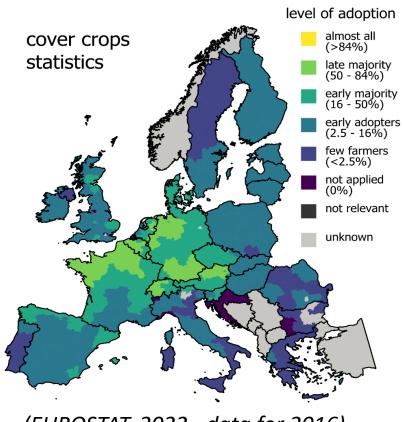
• da 12.6 miliardi t di biomasss (s.s.)

DISPONIBILI (certificato EBC): • 0.064 milioni t biochar

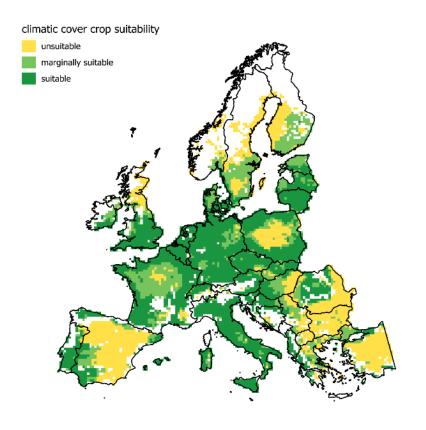
• 0.26 **milioni** t biomassa (Hagemann et al., 2024)

43.750 anni per produrre il biochar necessario alla superficie potenziale

NECESSITA' DI MOLTA BIOMASSA


MOLTI
IMPIANTI

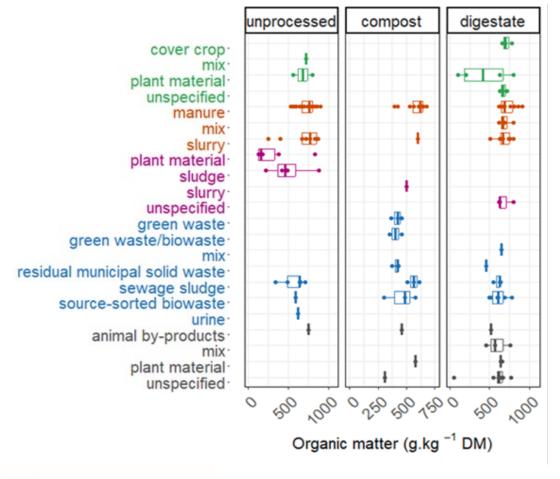
COMPETIZIONE!!


NECESSITA' DI UTILIZZO DEGLI AGRICOLTORI

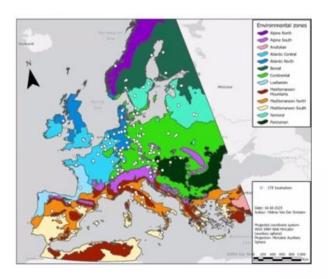
Limiti bio-fisici all'implementazione delle pratiche agricole

(EUROSTAT, 2022 - data for 2016)

(Heller et al., 2024. EJSS)


modellizzato sulla base di:

- Temperatura,
- Precipitazioni,
- Pendenza,
- Tipo di suolo
- Ecc...



Distribuzione di materiale organico e SOC

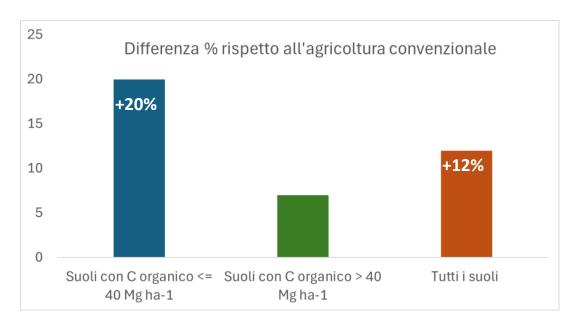
Alta diversità di materiale organico in Europa

Sulla base di 210 studi di lungo periodo in Europa

- Immagazzinamento del carbonio
- Biodiversità del suolo
- Fertilità
- Proprietà fisiche del suolo

IMPATTO SEMPRE POSITIVO

(Caradec et <mark>al., in prep</mark>ar<mark>ation</mark> Van Der Smiss<mark>en et al, pr</mark>e-<mark>print)</mark>



Agricoltura conservativa e SOC

PRATICHE

- non lavorare il suolo
- lasciare i residui colturali in campo
- includere quante più possible colture nella rotazione

METANALISI GLOBALE di 47 studi.

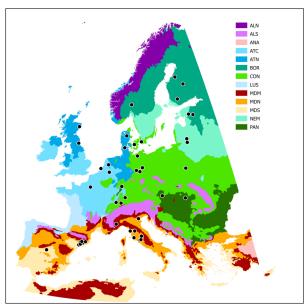
(Tadiello et al., 2023)

COSA INFLUENZA L'ACCUMULO DI SOC

- SOC inziale
- contenuto di argilla
- clima (temperatura e precipitazioni)
- latitudine
- durata della sperimentazione.

Agricoltura conservativa: +0,48 ton/ha/anno

Area mediterranea altamente vulnerabile al rischio di desertificazione nel prossimo futuro



Agricoltura biologica e SOC

PRATICHE

- No concimazione minerale
- No pesticidi, fungicidi o erbicidi convenzionali
- Includere quante più colture possibli nella rotazione
- Consociazioni, colture in secondo raccolto

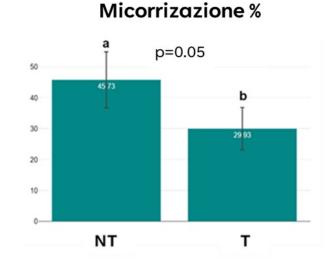
METANALISI EUROPEA di 47 siti sperimentali (46 studi).

(Forafellner et al., 2024, in preparation)

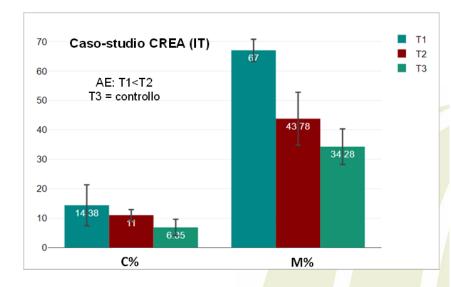
IMPATTO SU SOC

- +11% rispetto ad agricoltura convenzionale con l'applicazione di soli fertilizzanti minerali.
- No effetto rispetto ad agricoltura convenzionale con fertilizzanti minerali + organici.
- Profonda influenza di:
 - precipitazioni medie annuali,
 - pH
 - contenuto di argilla
- Maggiore incremento di SOC se maggiore durata della rotazione.

Le pratiche agroecologiche, SOC e biodiversità


COMBINAZIONE DI PRATICHE

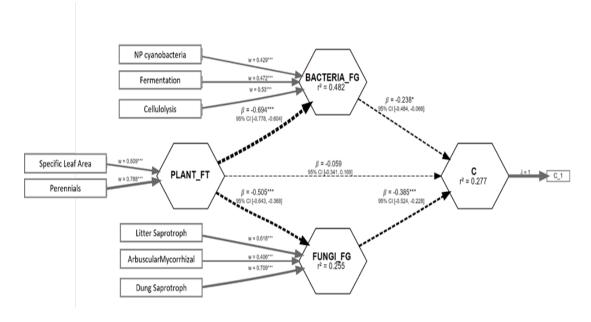
- riduzione della lavorazione del suolo
- maggiore diversità delle specie vegetali in campo
- fertilizzazione organica / compost / bioinoculanti fungini



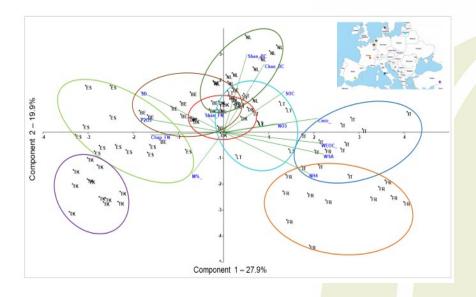
9 siti sperimentali:

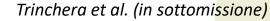
- 7 lungo periodo
- 2 nuovi

L'assenza di aratura favorisce la micorrizazione radicale in campo (*Trinchera & Warren Raffa, 2023*)


- > pratiche agroecologiche (T1 e T2, flora spontanea e colture di copertura) →
- > micorrizzazione radicale >
- > C% nei macroaggregati fini del suolo

Le pratiche agroecologiche, SOC e biodiversità


Modello di accumulo di C nel suolo



(Warren Raffa et al., in sottomissione)

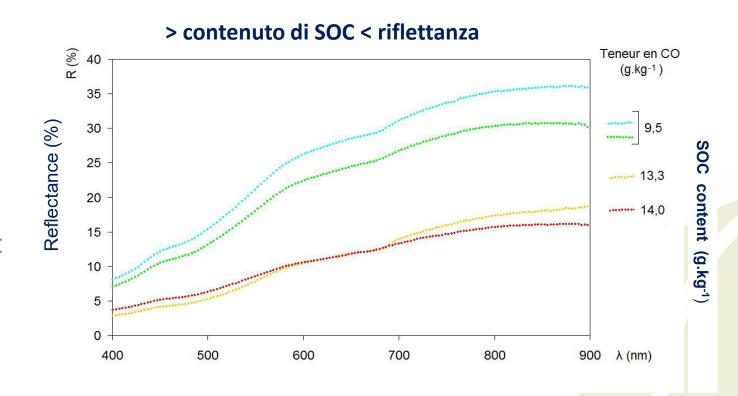
Gli indicatori testati altamente influenzati da regioni pedoclimatiche, indipendemente dalle pratiche applicate.

Gestione agroecologica va adattata alle caratteristiche dell'agrosistema regionale.

Come misurare gli assorbimenti di C per i crediti di carbonio

Misurare e certificare gli assorbimenti di SOC per i crediti di carbonio

PAESE			METODI MISURA DEL CARBONIO ORGANICO NEI SUOLI					
	ORGANIZZAZIONE/ PROGRAMMA	METODOLOGIA	MODELLI	VALORI DI DEFAULT	REMOTE SENSING	CAMPIONAMENTO DEL SUOLO		
	American Carbon Registry	Avoided conversion of grasslands and shrublands to crop production 2.0	e.g. DAYCENT	X	X	Alternativa ai modelli		
	CLIMATE	Soil Enrichment Protocol v 1.1	+ campionamento	X	X	t0+t5,t10 + modelli		
2 55	RESERVE	Avoided grassland conversion protocol 2.1	X	~	X	X		
	Verified Carbon Standard A VERRA STANDARD	VM0042 Methodology for Improved Agricultural Land Management v 1.0	opzionale	X	opzionale	obbligatorio		
	₩ Nori	Nori Croplands Methodology, v 1.3	Tier-3 DAYCENT	X	Х	X		
	Alberta	Quantification Protocol For Conservation Cropping Version: 1.0	Modelli empirici basati su fattori di default	~	X	X		
	Australian Government	Methodology Determination 2021	opzionale	X	X	obbligatorio		
A	EUROPEAN COMMISSION	Proposal of regulation for the certification of carbon removals	?	? menzionato	? incoraggiato	?		

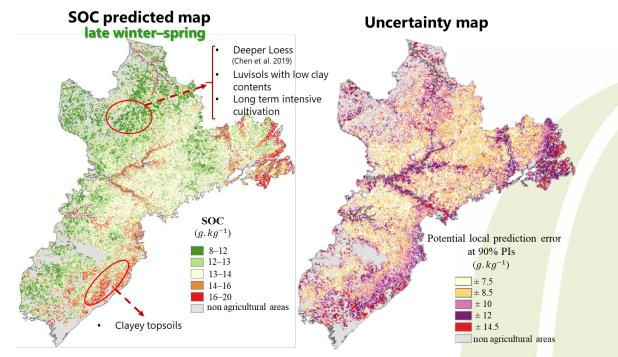

Remote sensing per la stima degli assorbimenti di carbonio nel suolo

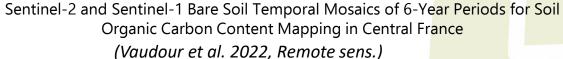
VANTAGGI

- Dati pubblici e gratuiti in UE (programma Copernicus ESA):
 - Sentinel 2 (sensori ottici passivi)
- Ogni 5 giorni
- Risoluzione geometrica: 10x10 m
- Omogenei a scala europea

COMPLESSITA'

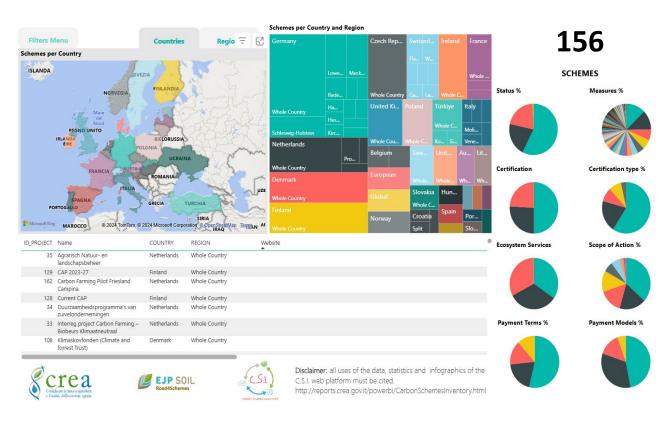
- I dati satellitari (riflettanza, Sentinel 2) possono essere utilizzati per stimare il SOC sulla base di modelli spettrali:
 - calibrati con dati di misure a terra ed in laboratorio.
- Fattori di disturbo nel segnale per SOC:
 - Vegetazione → necessario suolo nudo!
 - Umidità del suolo → derivato da Sentinel 1
 - Tessitura
- Dati superficiali (3 4 cm di profondità nel suolo)

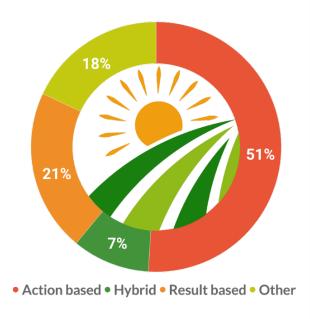

Remote sensing per la stima degli assorbimenti di carbonio nel suolo


IMPIEGO NEL CONTESTO DEL CARBON FARMING

- Piccoli cambiamenti nel SOC durante la breve durata dei progetti di carbon farming → monitoraggio con remote sensing non idoneo
- Trend nel SOC apprezzabili solo nel lungo termine
- Utile per monitorare uso e gestione del suolo (vegetazione, lavorazioni).

SUGGERIMENTI


- mosaici di serie temporali → aumento della superficie con suolo nudo
- Transparenza su accuratezza stime
- Validazione dei modelli a terra

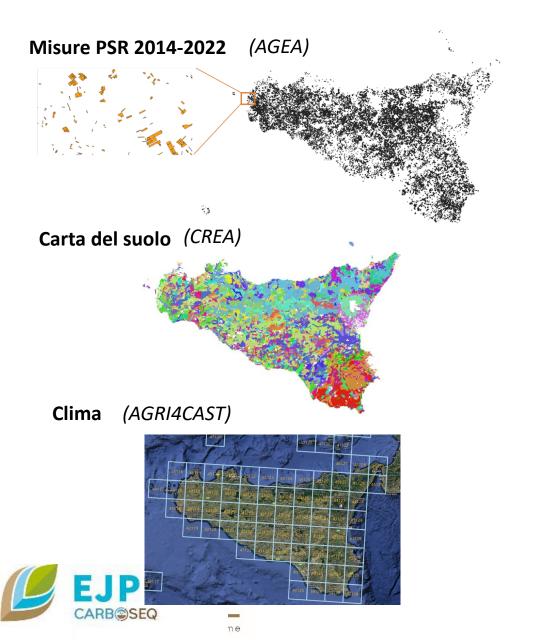


Monitoraggio assorbimenti di carbonio in UE per crediti di carbonio

http://reports.crea.gov.it/powerbi/CarbonSchemesInventory.html

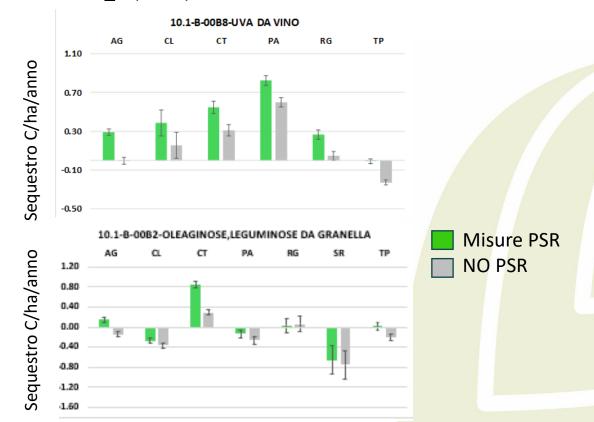
- 50% degli schemi di certificazione emettono crediti sulla base di AZIONI
- Agricoltori molto scettici verso pagamenti basati su RISULTATI
- Agricoltori poca fiducia e dimestichezza con MODELLI

Altre politiche, al di là dei crediti di carbonio



EJP SOIL has received funding from the European Union's Horizon 2020 research and innovation programme: Grant agreement No 862695

Impatto della PAC su SOC in Sicilia



Produzioni (ISTAT)

	Agrigento	Caltanissetta	Catania	Enna	Messina	Palermo	Ragusa	Siracusa	Trapani
Type of crop	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)	Yield (q/ha)
Grapevine	73.82	78.72	78.72	67.86	88.10	125.50	78.72	82.13	57.81
Olive trees	15.32	22.50	32.93	39.57	14.95	22.30	32.69	20.01	23.89
Citrus orchards	186.25	185.58	176.75	280.12	155.11	157.30	300.88	212.32	100.49
Fruit orchards	178.43	164.05	237.37	152.55	164.71	164.05	231.36	125.29	98.51
Almond, Nuts, Pistachio trees	13.50	13.75	10.83	16.59	7.58	28.19	17.01	28.84	42.36

0	Agrigento	Caltanissetta	Catania	Enna	Messina	Palermo	Ragusa	Siracusa	Trapani	
Crops	Yield q ha ⁻¹									
Winter wheat	27.6	27.5	28.6	28.8	27.3	27.2	32.3	27.2	22.9	
Oat	104.4	48.5	15.0	48.5	157.5	29.4	101.6	100.2	20.5	
Fava bean	67.6	30.7	28.3	33.3	77.3	126.5	29.0	90.6	21.5	
Barley grass	104.4	48.5	0.0	0.0	157.5	0.0	0.0	100.2	0.0	
Waxy Barley	0.0	0.0	0.0	0.0	0.0	0.0	101.6	73.6	0.0	
Legume (whole)	108.3	47.0	202.8	16.5	209.0	54.9	23.4	46.4	77.3	
Sulla clover	108.3	47.0	202.8	16.5	209.0	54.9	0.0	46.4	77.3	
Open field fresh fava bean	67.6	30.7	28.3	33.3	77.3	126.5	29.0	90.6	21.5	
Tomato in open field	180.0	136.2	233.3	156.7	213.8	121.9	446.9	342.6	100.0	
Fresh tomato in open field	180.0	136.2	233.3	156.7	213.8	121.9	446.9	342.6	106.0	

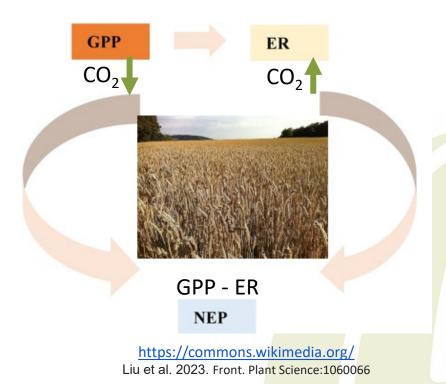
Modello RothC10_N (CREA)

Migliorare l'efficacia delle politiche del suolo attraverso migliori indicatori di GHG

Identificazione di indicatori migliori per valutazione e mappatura di:

- minacce del suolo
- servizi ecosistemici del suolo

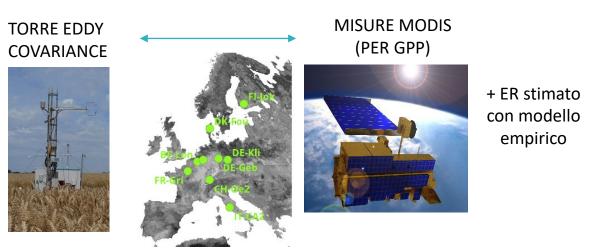
capacità del suolo di regolare emissioni di CO₂

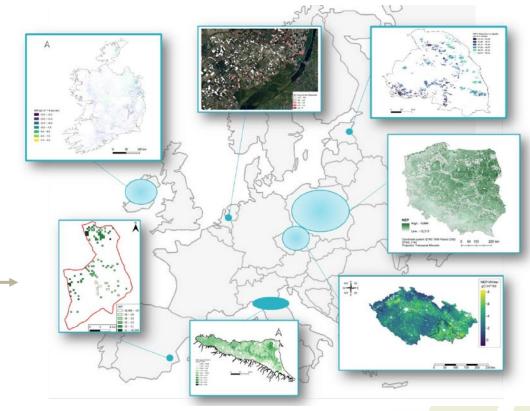

Indicatore:

Produzione netta dell'ecosistema (NEP)

- •NEP misura il carbonio che il suolo stocca (NEP positivo) o emette (NEP negativo) come risultato del flusso di CO2 nel tempo
- Difficile e costoso da misurare
- In un cookbook si propone un metodo innovativo per stimare NEP

Scarica qui il cookbook





Migliorare l'efficacia delle politiche del suolo attraverso migliori indicatori di GHG

- SERENA ha sviluppato un modello che stima NEP
- per una coltura di riferimento (campi di grano)
- da dati facilmente disponibili (da satellite)
- in un intervallo di tempo di riferimento (8 giorni minimo)

• il "cookbook" è stato applicato a varie scale dai membri del partenariato SERENA

Più verde, più stoccaggio di C!

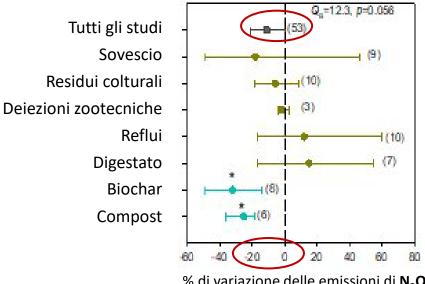
Punti di forza di NEP SERENA:

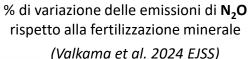
- Facile di applicare
- Precisione accettabile per stimare flussi di CO₂ dal suolo

Aspetti da migliorare:

- •Migliorare il livello di errore quando stime annuali (intervallo di riferimento)
- Validazione con dati derivanti da modelli alternativi

Efficacia complessiva della mitigazione dei cambiamenti climatici, oltre alla CO₂




Mitigazione delle emissioni di gas serra dal suolo

- Per garantire efficia complessiva contro cambiamenti climatici →
 EMISSIONI NETTE NEGATIVE:
 - Sulle stesse parcelle considerare emissioni anche di N₂O, CH₄ (*trade-off*)
 - Evitare rilocalizzazione (leakage effect) su altre parcelle

Effetto COMPOSTI ORGANICI rispetto alla fertilizzazione minerale

Meta-analisi con più di 50 studi in 15 nazioni Europee

-10% in media

Compost: -25%

Biochar: - 33%

Effetto variabile in base a:

√ climate

✓ suolo (pH e tessitura)

Altri composti organici:

- No effetto significativo, ma:
- √ -16% (OM da solo)
- + 14% (OM + N minerale)

STUDIO ESEGUITO PER MOLTE PRATICHE DI CARBON FARMING→

L'effetto positivo su SOC è ridotto da aumentate N₂O ma mai annullato o superato

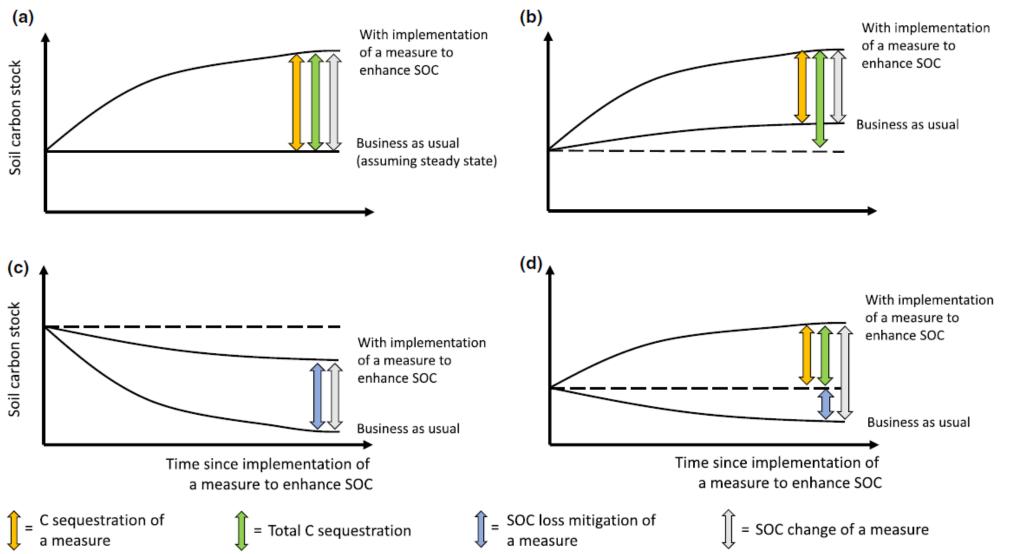
Conclusioni

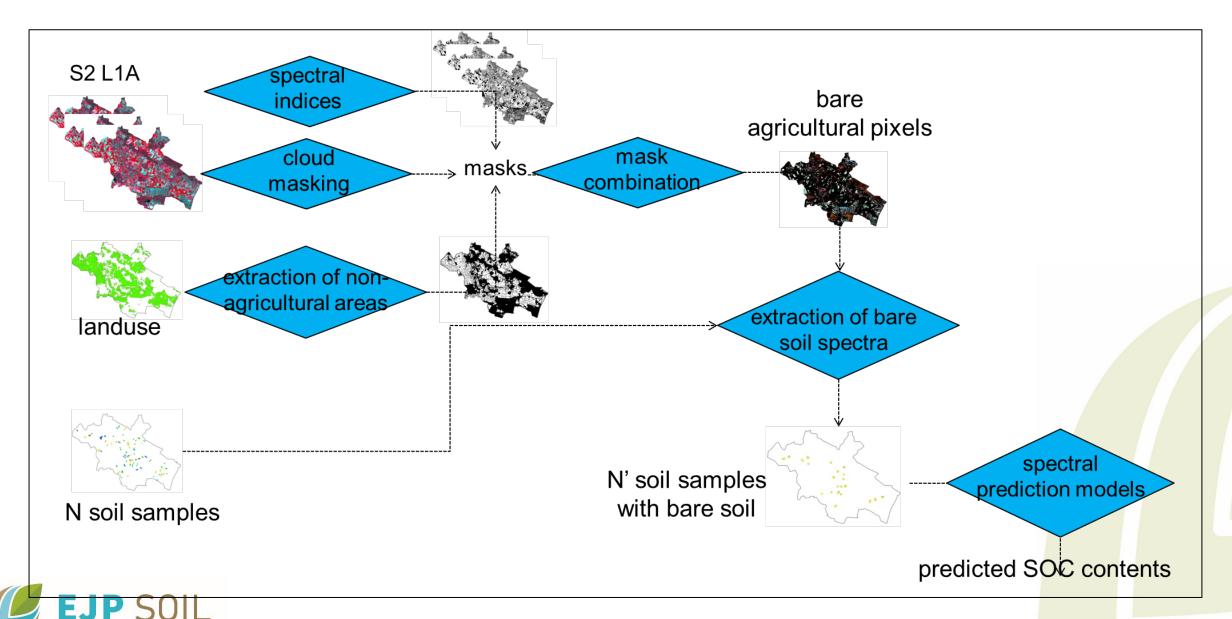
EJP SOIL has received funding from the European Union's Horizon 2020 research and innovation programme: Grant agreement No 862695

Conclusioni

- La mitigazione della perdita di SOC è la precondizione per il sequestro di SOC
- La somma del sequestro di C potenziale = 3 % delle emissioni totali GHG EU+
- Oltre alla mitigazione del cambiamento climatico:
 - + SOC = + fertilità e + salute del suolo
- L'effetto positivo su SOC mai annullato o superato da N₂O
- Maggiori risultati se combinazione di pratiche e adattamento a condizioni pedo-climatiche locali
- Ruolo centrale dei microorganismi del suolo
- Remote sensing:
 - non adatto a monitorare le piccole variazioni di SOC da carbon farming
 - utile per monitorare cambi uso e gestione del suolo
 - indicatore NEP promettente
- Gli agricoltori preferiscono sistemi di incentivo basati sull'azione
- Al di là dei carbon credits anche la PAC sostiene pratiche efficaci per la tutela del suolo:
 - Maggiore efficacia se regionalizzazione misure.

Grazie per la vostra attenzione!! Grazie a tutti i colleghi che hanno fornito contenuti per questa presentazione!!





Scenari di baseline

Approccio globale per modelli spettrali per la stima del SOC da sensori ottici (STEROPES-WP1)

European Joint Programme