

L'ESPERIENZA DEL PROGETTO "DOMINO" SU COLTURE FRUTTICOLE E VITE

Davide Neri – Università Politecnica delle Marche

d.neri@univpm.it

Dynamic <u>sod mulching</u> and use of <u>recycled</u> <u>amendments</u> to increase <u>biodiversity</u>, <u>resilience</u> and <u>sustainability</u> of intensive organic fruit <u>orchards</u> and <u>vineyards</u>

Project coordinator: Davide Neri Assistant: Serena Polverigiani

Agricultural, Food and Environmental Sciences - Polytechnic University of Marche, Ancona, Italy

Starting date: 1° May 2018

🕐 eratunasrina.ora

Rationale 1

Improve long-term sustainability of **intensive organic orchard** and **vineyard** by innovative strategies expected to **increase biodiversity** as a source of resilience for the agroecosystems, and to **reduce the dependency on external input**.

Modified from Zucconi, 1996

Rationale 2

- Focus on the **interaction** of fruit trees with different wild species, organic residues and microbioma.
- To break the paradigm of monoculture in organic fruit growing by the development of new intercropping strategies and amendments to increase the sustainability of organic fruit growing and to maintain ecosystem services.

Living mulches: not weed but herbs

RETERURALE NAZIONALE 20142020

SBR SBR organic, IT

- AIAB Ass. It. Agricoltura Biologica, IT
- UHOH University Hohenheim, DEFOKO Fördergemeinschaft

Ökologischer Obstbau e.V., DE

DOMINO consortium and location

The proposed strategy includes:

Introduction of new cash intercropping species, expected to contribute to plant nutrition and protection while increasing biodiversity;

BCM COM

Introduction of microbial-based products for plant nutrition and protection to promote soil biodiversity and enhance inputs efficiency;

Introduction of overhead netting and partial cover systems for crop protection;

Overall designing of orchard management to promote eco-services.

Dissemination tools

SPEZIAL

SUDTIROLER LANDWIRT NR. 20 9.11.2018

Mehr Nachhaltigkeit dank DOMINO

DOMINO ist ein neues, innovatives Management von Apfelanlagen. Gemeinsam mit Partnern will das Versuchszentrum Laimburg die Fruchtbarkeit, Biodiversität und ökonomische Nachhaltigkeit der Anlagen steigern

Das Frojeki DOMINO vertöge dar. Ziel, new Technologien, Barbard, Sanghara Sanghara, Sanghara,

rivista di FRUTTCOLTURA P e di ortofloricoltura 10 Anno LXXI - N. 10 - OTTOBRE 2017

National technical journals

= 🕒 YouTube''

Domino-Project-Core-Organic

ISSN 0392-954X

http://www.domino-coreorganic.eu/

Methodology

The project is based on a multi-stakeholder approach which includes different actors (farmers, extension, researchers,

agricultural administration)

	DOMANDE RISPO:	STE 3	
Genere			
O Maschio			
C Femmina			
Titolo di studio			
Testo risposta breve			
Membro di associazioni	di produttori?		
No.			
○ si ○ No	m		
O si O № Metodo di commercializ:	mzazione	Caselle di controllo	v
Si No Metodo di commercializz	::: zazione	Caselle di controllo	×
Si No Metodo di commercializz Diretta Rivenditore	zazione	Caselle di controllo	* * * *
Si No Metodo di commercializz Diretta Rivenditore Grossista	zazione	Caselle di controllo	* × × ×
Si No Metodo di commercializz Diretta Rivenditore Grossista Associazioni	zazione	Caselle di controllo	* * * *

Strawberry, Neri et al. 2011

SOIL NUTRIENT "MOBILITY" AND AVAILABILITY

- 1. ION MOVEMENT TOWARD ROOT(S)
 - a.) Mass flow in soil solution.
 - b.) Ionic diffusion to root

2. ROOT MOVEMENT (I.E., GROWTH) TOWARD NUTRIENT

C - Interception

(Marschner 1995)

ROOT PLASTICITY

Strawberry root apex (cv. Tochiotome)

Neri, Inujima, Sugiyama 2002

Compost in trenches in two sides

OLIVE

PEACH

Allelopathy

If the roots of trees grow in monospecific orchards there is a dyspatic reaction

12 days after planting

(Neri, Sugiyama, Inujima, 2002)

21 DAP

100 residues

- Root aging

Substrate hostility

Root clusters

Deeper Roots

100 residues

Strong Root branching

(Neri, Sugiyama, Inujima, 2002)

30 days after planting

Control

100 %

(Neri, Sugiyama, Inujima, 2002)

at the end of the 2° year without residues

(Mascanzoni, Zucconi, Neri 1996)

Apple residues <1mm at the end of the 2° year

(Mascanzoni, Zucconi, Neri 1996)

M9 at the end of the 2° year with apple residues in the top laye

M9 at the end of the 2° year with apple residues in the bottom (Mascanzoni, Zucconi, Neri 1996)

control

with apple residues

M106 at the end of the 2° year

³² (Mascanzoni, Zucconi, Neri 1996)

M9 at the end of the 2° year with peach residues

Giorgi, Neri, Lodolini, Savini 2008

Olea europaea: pomace fitotoxicity

pomace (olive husk) hay plus pomace

(8 replicates)

Giorgi, Neri, Lodolini, Savini 2008

Olea europaea: pomace fitotoxicity

Two factors experiment

Substrate

compost pomace (olive husk) hay hay plus pomace

• Location: whole pot (1) half pot (0.5)

(8 replicates)

Giorgi, Neri, Lodolini, Savini 2008

giorni dopo trapianto

(Mascanzoni, Zucconi, Neri 1996)

(Zucconi 1996)

16 days after transplanting

(Neri, Sugiyama, Inujima, 2002)

Organic alternatives to soil disinfection in apple replant

(CRESO 2012)

FRUTTAR RODUCTION PER TREE AT THE SECONDALE 20142020

(CRESO 2012)

ETERURAL Organic alternatives to soil disinfection in apple replant	
Treatment	microbic C (mg/kg d.m.)
GREEN COMPOST	688,3 (±58,0)
DAZOMET	386,1 (±52,0)
NOT TREATED CONTROL	347,1 (±19,1)

Apricot orchard installed in February 2018 12 rows 3 X4.5 m spaced (284 plants)

Organic Team UNIVPM

Coordinators DOMINO

Davide Neri, PhD and Serena Polverigiani, PhD

PhD student Mia Jebu, MS

Techniciens Murri Giorgio, PhD

Graduate student Matteo Zucchini, MS

MS student Paolo Rita

n.1 TOPIC

Selection of local biodiversity toward a higher technical sustainability.

To select the least competitive population by exploiting the existing diversity as resource.

Basic principle

To avoid a **biological vacuum** that would offer an advantage to the most aggressive species

... COMMENSAL species

There are commensal species, and

Selective manual weeding

50X100 cm frame under each plant

- ✓ To uproot out about 2-4 plantlets per plant
- ✓ Extimated labour of about <u>8 hours/ha</u>

In June were manually eliminated all..

Tall and taproot

Creepers

Pluriennial

Phytosociological survey (September 2018 and February 2019)

Survey by Prof. Fabio Taffetani full professor of Botany at UNIVPM

No weeding

Selective weeding

November 2018 (+ 6 months)

а

Selective weeding

EFFECT ON THE MAIN CROP

The **lower** incidence of **perennial** species reduced the soil cover during the second winter (not during the first summer)

A reduced incidence of highly competitive species was still appreciable after 10 months

*Relative % on total soil cover

June 2018

0.0

Efficacy of living mulching in controlling soil cover

What species for an effective living mulching?

...after 1 month

2nd of May

Superficial tillage of the row and living mulching transplanting

Potentilla spp.

Strawberry of Sibillini mountains Fragaria vesca diploid

Pink strawberry Fragaria X Ananassa octoploid

White strawberry Fragaria vesca diploid

Mulching species performances

Jannuary 2019: whide soil cover during winter

Hilly areas exposed to soil erosion

Picking the better mechanization technique by the partecipative approach

Great opportunities from stakeholder's feedbacks

Quick development of the canopy and large production of runners

Soil fully covered over the winter

The owner remarked:

- ✓ The technical is helpful especially in the management of the area surrounding the trunk harder to manage otherwise.
- $\checkmark\,$ All the tap root weeds were affected by the laboring with blade.
- \checkmark Absolutely no damages on strawberries when the labor is done with fresh, moist soil.
- ✓ The blade itself contributed in shifting the plants, thus helping soil colonization.
- ✓ Great compatibility of the labor required with the other activities scheduled.

WEAK POINT

Suitable just in a soil managementstrategy that requires frequent soil labor to avoid compaction.

Hardly succesfull in the presence of a previous grass cover.

Extimated labour of about <u>30 hours/ha:</u>

Thus includes a manual soil labor that would have been necesary

in the 1°-2° and 3° year in any case

The presence of strawberry avoid other manual weeding in the 2° and 3° years.

No costs for the trawberry plantlet: harvested from the same wineyard

RETERURALE NAZIONALE 20142020

Row grassing management replaced by goat grazing

Transplanted in April 2018

Grazed during winter

<image>

Selection at canopy level

Several plantlets, from runners, survived the grazing and developed from late winter (with about no competition).

Preliminary conclusion

- to valorize local biodiversity for a sustainable soil cover.
- Living mulching could be a successful strategy but species and timing really matter.

Rete Rurale Nazionale

Autorità di gestione: Ministero delle politiche agricole alimentari e forestali Via XX Settembre, 20 – Roma www.reterurale.it - @reterurale www.facebook.com/reterurale

1[°] treatment with Cu 4 of March

The phenological stage of all strawberries (according to BBCH scale) ranged from 00 to 12.

Frequencies		
Level	Count	Prob
C	15	0.05639
51	99	0.37218
53	111	0.41729
57	13	0.04887
67	2	0.00752
69	18	0.06767
71	8	0.03008
Total	266	1.00000
N Missing 2588		
7 Levels		

Principal growth stage 0: Sprouting/Bud development

- 00 Dormancy: Leaves prostrate and partly dead
- 03 Main bud swelling

Principal growth stage 1: Leaf development

- 10 First leaf emerging
- 11 First leaf unfolded
- 12 2nd leaf unfolded
- 13 3rd leaf unfolded¹
- Stages continuous till
- 19 9 or more leaves unfolded

Strawberry phenological stage (BBCH)

21 March

Principal growth stage 6: Flowering

- 60 First flowers open (primary or A-flower)
- 61 Beginning of flowering: about 10% of flowers open
- 65 Full flowering: secondary (B) and tertiary (C) flowers open, first petals falling
- 67 Flowers fading: majority of petals fallen

Thanks for your attention!

Rete Rurale Nazionale

Autorità di gestione: Ministero delle politiche agricole alimentari e forestali Via XX Settembre, 20 – Roma www.reterurale.it - @reterurale <u>www.facebook.com/reterurale</u>

