

(How) can economic experiments be used to inform EU agricultural policy?

Expert Group on Monitoring and Evaluation on the CAP DG AGRI, 24 May 2016

Joint Research Centre (JRC-IPTS) European Commission

Liesbeth.COLEN@ec.europa.eu

JRC SCIENCE AND POLICY REPORTS

(How) can economic experiments inform EU agricultural policy?

Authors:

Liesbeth Colen, Sergio Gomez-y-Paloma, Uwe Latacz-Lohmann, Marianne Lefebvre, Raphaële Préget, Sophie Thoyer

2015

Objectives:

- Inform policy makers and evaluators on the potential (and limitations) of experimental methods
- Promote the integration of experimental methods in the CAP evaluation toolbox

Outline

- 1. Current evaluation toolbox and new evaluation needs
- 2. Experimental approaches
 - 1. Choice experiments
 - 2. Lab and field experiments
 - 3. Randomized Controlled Experiments
- 3. Promote the use of experimental methods

1. Current evaluation toolbox and new evaluation needs

CAP reform and new needs

- Payments targeted at **farm** or even plot level
- Accounting for the **voluntary** nature of measures
- Evaluation and acceptability of **regulatory** measures
- Flexible enough to account for the **heterogeneity** in CAP implementation across Member States and regions.
- Increased attention for careful assessment of the **net impact** of policies
- Recognition of the role of **behavioural** factors in decision making

Current evaluation toolbox and data used

Current evaluation toolbox:

- Simulation models
- Statistical analysis of survey data and econometric techniques to estimate causal impacts (DID, matching, ...) accounting for selection bias

- Case studies based on qualitative/quantitative data

Mostly relying on observational data

- Farm accountancy data network (FADN, DG AGRI)
- Farm Structure Survey (Eurostat)
- Market data from Eurostat, OECD, FAO
- administrative data collected by MS

- qualitative/quantitative information from focus groups or stakeholder interviews)

Potential of experimental methods

Experimental methods seem to be hardly used in agricultural policy evaluation, although

- they generate **new data**
- they can measure the **net causal impact**
- "testing is faster and cheaper in the lab than in the real world"
- they take account of **behavioural drivers**

2. Experimental approaches in existing CAP evaluation studies

- 1. Choice experiments
- 2. Lab and field experiments
- 3. Randomized controlled trials (RCTs)

2-1. Choice experiments

- Participants are offerered several 'choice sets' of alternatives and choose
- Estimates how different factors affect choices made → why?
- Allows estimating Willingness To Pay (WTP) or Willingness To Accept (WTA)
- Stated preferences, i.e. hypothetical choices
- Can be easily combined with traditional survey

2. Experimental approaches: 2.1 Choice experiments

Example: Greening policy

What is farmers' willingness to accept the new 'greening' requirements? (Schulz et al., 2014)

- What factors affect farmers' willingness to comply?
- What are the perceived farm-level costs?

1

For each choice card, select one alternative:

Г			
	Attributes	Greening alternative	Opt-out alternative
	Ecological Focus Area (EFA)	7% of arable land	Penalty of €105 per hectare of arable land No greening provisions
	At least 3 crops, each covering no less than	5% of arable land	
	Land counting as EFA	Land enrolled in agri- environmental schemes	
	Permissible use of EFA	Leguminous crops may be grown on EFA	
	Location of EFA plots	EFA location fixed for 3 years	
	I would choose		4

Results:

- Respondents regard greening as a costly constraint
- Not all greening requirements are seen as equally demanding
 - Especially EFA is considered costly, as is the requirement to keep EFA fixed for 3 years
- Not all farmers feel equally affected:
 - E.g. farmers with high opportunity costs of land and high land use intensity are more likely not to comply
- 'Perceived' costs of greening (WTA) > penalty

Factors affecting the probability of choosing to comply with the greening requirements:

- ... increase in probability
- Higher payment cut
- Legum. crops on EFA permitted €300/ha legumes
- Landscape elements count as EFA €32/ha arable land

- Full-time farms
- Dairy farm €83/ha arable
 land

- ... decrease in probability
- Higher share of EFA
 €630/ha EFA
- Location of EFA fixed for 3 years €286/ha EFA

- High stocking rates
- High land quality
- o Farm with land in env.
 sensitive area €39/ha
- AES participation

2. Experimental approaches: 2.1 Choice experiments

Policy implications:

- Need to trade-off the ecological impact of stricter EFA requirements versus risk of lower compliance by farmers
- Fixing the location of the EFA (instead of allowing farmers to choose annually) is costly, so only do this if the land is assigned a high conservation value
- Don't make EFA tradable if a spatially inclusive distribution of the EFA is considered advantageous
- Allow growing of legumes on EFA land only if judged to yield significant conservation benefits

2. Experimental approaches: 2.1 Choice experiments

Example: Agro-environmental schemes

- What specifications are preferred for a *proposed* AES for cultivating nitrogen-fixing crops (Spain)?
- Why have farmers been less interested in AES with pesticidefree buffer zones than expected (Denmark)? How much land are farmers willing to put under contract?
- Can a collective bonus enhance farmers' enrolment in AES with reduced pesticide use in vineyards (France)? How large must that bonus be?

Experimental approaches:
 2.2 Lab & field experiments

2-2. Lab and field experiments

- In the **lab** (often with students)
- In the **field** (with real stakeholders)
- Real-world incentives (they can win/lose money according to their decisions) → reduces strategic bias
- Useful for pre-testing new policies or policy designs
 - e.g. how does behaviour change when rules of a policy is changed, or when permits become tradable, ...

2. Lab and field experiments

Example: income support policies

- Countercyclical payments in US 2002 Farm Act (McIntosh et al., 2007)
 - Lab experiment where students had to allocate acres to crops, some crops being eligible to countercyclical payments (CCP) in a context of price uncertainty
 - Allocation of crops under three policy scenarios: DP /DP + CCP / uncertain policy
 - Result: CCP lead to greater income certainty, less efficient production decisions and higher government payments.

2. Lab and field experiments

Example: income support policies

- Trading mechanisms for EU decoupled payment entitlements (Bahrs et al. 2008)
 - Lab experiments with students to provide first insights into effect of trading rules on market outcomes (bilateral trading vs. centralized market institutions)
- Capitalization of subsidies into land rental prices
 - Lab experiments with students and agricultural professionals

Example: agri-environmental policies

- Conservation auctions: conservation contracts with a specified set of management prescriptions are allocated to farmers on the basis of competitive bidding
 - What auction design is the most efficient to pay farmers to suspend irrigation in drought years?
 - Is it a good idea to make payments (partially) depend on the environmental outcome obtained? It increases effort, but participation rate falls.
 - How does imperfect monitoring of farmers' compliance with the contract affects the bidding?

2. Experimental approaches: 2.3 Randomized Controlled Trials

2-3. Randomized Controlled Trials

- Participants are randomly assigned to a 'treatment' or 'control' group
- 'Treatment' is the **real implementation** of the policy/program
- The control group acts as counterfactual
- Random allocations allows to derive the true **causal effect**
- Ethical concerns → "Close-to-random" procedures?

Example: Fertilizer subsidy program

- 'Savings and Fertilizers Initiative' (Kenya): policy to incentivize farmers to buy fertilizers immediately after harvest, when they have cash (Duflo et al., 2011)
 - Why so little fertilizer use in Africa?
 - Time-inconsistent behaviour and impatience: at harvest time, farmers have cash available but are not motivated to buy fertilizer in advance. Later in the season, when fertilizer is needed, no cash is left.
 - Can small, time-limited offers for advanced fertilizer purchase increase fertilizer adoption at lower cost than traditional subsidy program?
 - Five groups of farmers (randomly allocated) : get access to four different types of a fertilizer program + one comparison group

2. Experimental approaches: 2.3 Randomized Controlled Trials

🏶 SIGNIFICANTLY DIFFERENT FROM COMPARISON GROUP

2. Experimental approaches: 2.3 Randomized Controlled Trials

Example: Farmer training

- Farming training program in Armenia
 - Self-selection into training programs is problematic to assess its causal impact
 - Training was offered to a group of **randomly** selected farmers
 - Results:
 - training did not increase the adoption of improved agricultural practices or changes in cultivation of crops
 - no increase in household income or consumption

"Close-to-random" experiments

- Randomization as part of a **pilot program**: Randomly offering farmers to participate in a pilot study, while those not participating are the control group
- **Oversubscribed AES**: If more farms want to participate in a program than can be financed, a random choice of who can participate introduces the necessary randomization.
- **Phasing-in** of an AES: the first group of participants can be randomly chosen and, until all participate, the difference between participants and non-participants can be measured.
- **Encouragement design**: A random sample of farms can be targeted by an information campaign to participate in a voluntary AEM.

- 1. Understand the **needs**
 - Ex-ante vs. ex-post evaluation
 - Small changes in current (design of) policies vs. totally new policies
 - Need to measure the net causal impact
 - Understand why a policy is not working as expected
 - Integrate the lessons learned from current policies into next policy cycle

- 2. Make use of the **complementarity** of methodologies
 - e.g. behavioural parameters or elasticities estimated through lab or field experiments can be use to improve simulation models
 - e.g. choice experiments can provide information on expected adoption rates of RDP to be used in models
 - e.g. qualitative interviews identify policy designs to be included in the experiment
 - e.g. first pre-test in the lab with students to select policy designs; then testing different policy-designs with a small group of farmers using a field experiment, before testing the program on a small pilot of randomly selected farmers

- 3. Clarify the need for **representativeness**
 - Are outcomes of the experiment expected to be context-dependent?
 - Experiments can be repeated in different contexts
- 4. Find responses to **ethical** obstacles associated to randomization
 - Close-to-random experiments?
- Introduction of innovative methodologies may need active promotion
 - Invest in in-house expertise
 - Inform evaluators on the potential of experimental approaches and openness towards the use of these new methods

Questions? More info?

Liesbeth Colen

JRC-IPTS, European Commission Liesbeth.COLEN@ec.europa.eu

Marianne Lefebvre

Université d'Angers, France <u>Marianne.LEFEBVRE@univ-angers.fr</u> (for more info on the newly launched network of researchers "EU working group Economic experiments for CAP evaluation")

JRC Report: (How) can economic experiments inform EU agricultural policy?

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC97340/jr

<u>c%20report%20final.pdf</u> (doi:10.2791/17634)

