Terrestrial Laser Scanning: applicazioni sviluppate con il progetto Agridigit

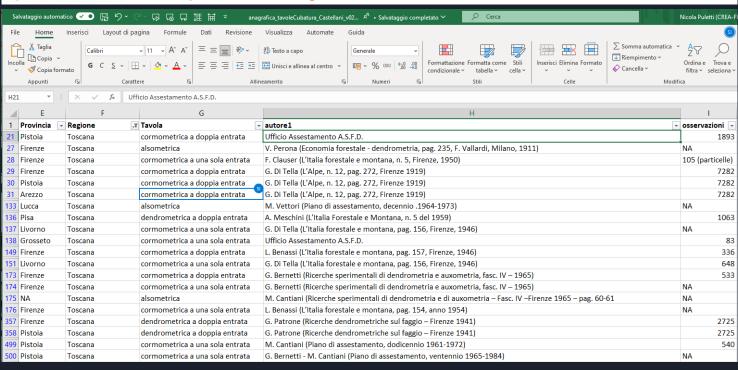
Nicola Puletti*

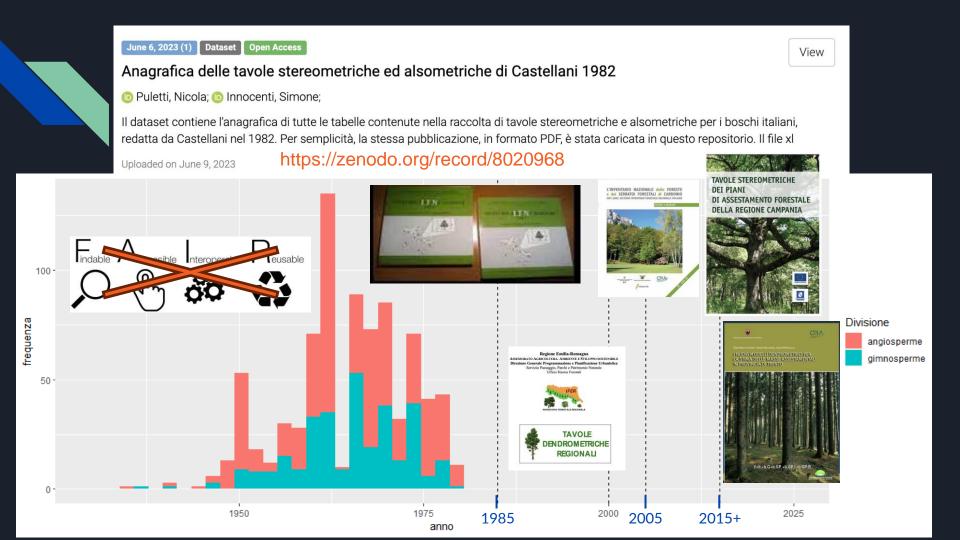
Simone Innocenti

Matteo Guasti

https://www.crea.gov.it/en/web/foreste-e-legno/geomatica-forestale

View


Anagrafica delle tavole stereometriche ed alsometriche di Castellani 1982


Deletti, Nicola; Innocenti, Simone;

Il dataset contiene l'anagrafica di tutte le tabelle contenute nella raccolta di tavole stereometriche e alsometriche per i boschi italiani, redatta da Castellani nel 1982. Per semplicità, la stessa pubblicazione, in formato PDF, è stata caricata in questo repositorio. Il file xl

Uploaded on June 9, 2023

https://zenodo.org/record/8020968

Modelli datati

La realizzazione di tavole di cubatura locali è una pratica abbandonata nel nostro Paese per due motivi:

- 1. la forte riduzione delle attività selvicolturali
- costi/benefici connessi alla loro produzione (misurazione alberi modello)

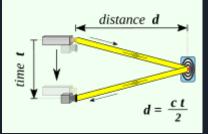
"Il rapporto tra costi delle utilizzazioni e valore di mercato del legno è da tempo in costante aumento"

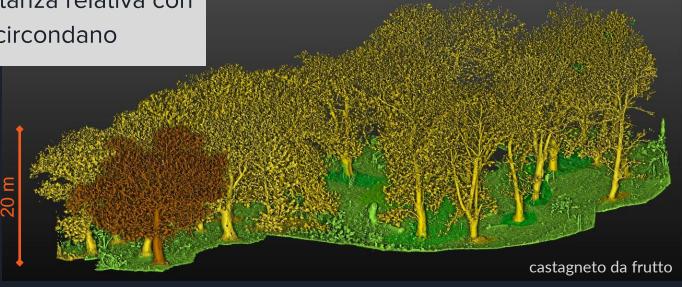
Portoghesi et al 2019 - IFM

La scala

Sono sicuramente importanti attività che forniscono strumenti a supporto della gestione forestale su larga scala

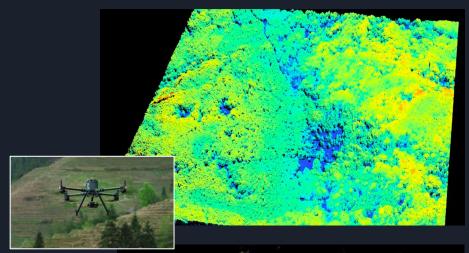
Ma gestori e operatori forestali ha bisogno *anche* di strumenti accurati e aggiornati per svolgere il loro lavoro a livello aziendale




dia-	altezze (m)															
metri (cm)	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
8	0.0212	0.0224	0.0236	0.0247	0.0259	0.0270	0.0282	0.0293								
9	0.0269	0.0288	0.0306	0.0325	0.0343	0.0361	0.0379	0.0396	0.0434							
10	0.0332	0.0359	0.0385	0.0411	0.0456	0.0462	0.0487	0.0512	0.0536	0.0561						
				0.0505												
12	0.0476	0.0522	0.0566	0.0608	0.0651	0.0693	0.0735	0.0776	0.0817	0.0857	0.0897	0.0936				
13				0.0720												
14		0.0714	0.0777	0.0540	0.0902	0.0963	0.1024	0.1084	0.1143	0.1201	0.1299	0.1316	0.1373	0.1429		
15		0.0920	0.0894	0.0968	0.1040	0.1112	0.1183	0.1253	0.1323	0.1391	0.1459	0.1525	0.1591	0.1656	0.1720	
16				0.1104												
17		0.1053	0.1151	0.1246	0.1344	0.1438	0.1532	0.1624	0.1715	0.1805	0.1893	0.1960	0.2066	0.2151	0.2234	0.2314
18				0.1400												
19				0.1560												
20			0.1591	0.1728	0.1863	0.1995	0.2126	0.2255	0.2382	0.2506	0.2629	0.2750	0.2966	0.2985	0.3100	0.3213
21			0.1752	0.1903	0.2052	0.2198	0.2343	0.2454	0.2624	0.2761	0.2896	0.3028	0.3159	0.3297	0.3412	0.3530
22			0.1920	0.2066	0.2249	0.2410	0.2568	0.2723	0.2876	0.3026	0.3173	0.3318	0.3460	0.3599	0.3736	0.387
23				0.2276	0.2455	0.2630	0.2802	0.2972	0.3138	6,3301	0.3461	0.3618	0.3772	0.3922	0.4070	0.4215
24				0.3474	0.2668	0.2859	0.3045	0.3229	0.5409	0.3585	0.3758	0.3928	0.4094	0.4256	0.4415	0.457
25				0.2679	0.2889	0.3095	0.3297	0.3495	0.3699	0.3879	13.40m5	0.4249	0.4426	0.4600	0.4771	0.493
26				0.2892	0.3118	0.3340	0.3557	0.30770	0.3978	0.4182	0.4392	0.4577	0.4766	0.4954	0.5136	0.531
27				0.3111	0.3354	0.3592	0.3825	0.4053	0.4276	0.4494	0.4707	0.4916	0.5119	0.5317	0.5511	0.569
28					0.3596	0.3852	0.4101	0.4345	0.4583	0.4815	0.5042	0.5263	0.5479	0.5690	0.5895	0.609
29					0.3849	0.4120	0.4385	0.4645	0.4998	0.5145	0.5365	0.5620	0.5649	0.6071	0.6287	0.649
30					0.4107	0.4395	0.4677	0.4952	0.5221	0.5482	0.5737	0.5965	0.6226	0.6461	0.6688	0.690
31					0.4372	0.4678	0.4977	0.5268	0.5552	0.5828	0.6097	0.6356	0.6612	0.6858	6.7097	0.732
32					0.4644	0.4968	0.5284	0.5592	0.5891	0.6182	0.6465	0.6739	0.7006	0.7264	0.7514	0.775
33							0.5598	0.5922	0.6237	0.6543	0.6840	0.7128	0.7407	0.7677	0.7938	0.818
34							0.5920	0.6261	0.6991	0.6912	0.7223	0.7525	0.7816	0.8097	0.8369	0.863
35							0.6249	0.6606	0.6953	0.7289	0.7614	0.7928	0.8231	0.8524	0.8806	0.900
36							0.6564	0.6958	0.7321	0.7672	0.8011	0.8338	0.8654	0.8958	0.9250	0.953
37							0.6927	0.7318	0.7696	0.8062	0.8415	0.8755	0.9082	0.9397	0.9699	0.998

La tecnologia laser nel settore forestale

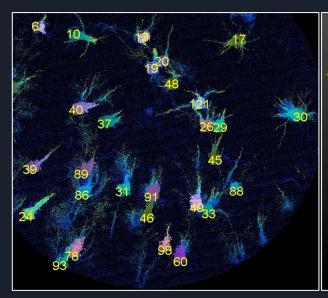
Tecnologia "attiva": il laser viene emesso da e ritorna a una stazione che registra la distanza relativa con gli oggetti che la circondano

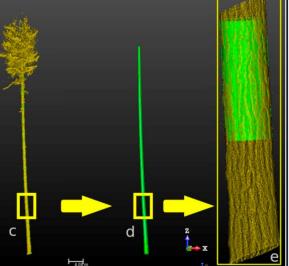

La tecnologia laser nel settore forestale

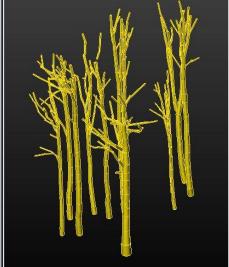
Tecnologia "attiva": il laser viene emesso da e ritorna a una stazione che registra la distanza relativa con gli oggetti che la circondano

Può essere montato su diverse piattaforme, aeree, mobili, fisse

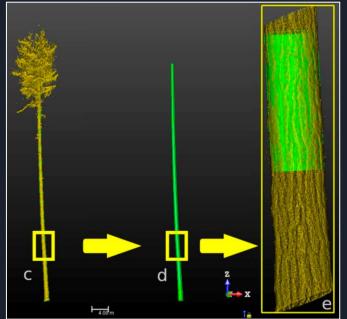
scala di applicazione ~ risoluzione

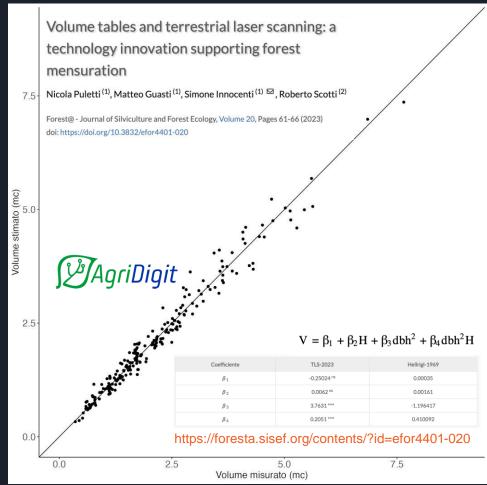






DENDROMETRIA
 ASSESTAMENTO
 PIANIFICAZIONE FORESTALE
 INVENTARI FORESTALI


- Parametri dimensionali (D_{130} e altezza)
- O Funzioni di profilo e tavole di cubatura
- O Assortimentazione legnosa e stem quality check



DENDROMETRIA
 ASSESTAMENTO
 PIANIFICAZIONE FORESTALE
 INVENTARI FORESTALI

DENDROMETRIA
 ASSESTAMENTO
 PIANIFICAZIONE FORESTALE
 INVENTARI FORESTALI

Volume tables and terrestrial laser scanning: a technology innovation supporting forest mensuration

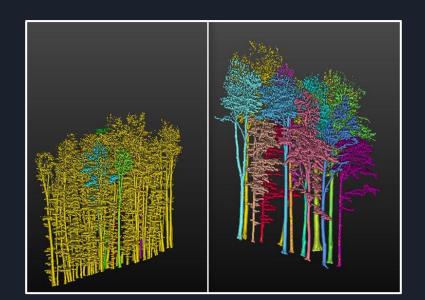
Nicola Puletti (1), Matteo Guasti (1), Simone Innocenti (1) ☑, Roberto Scotti (2)

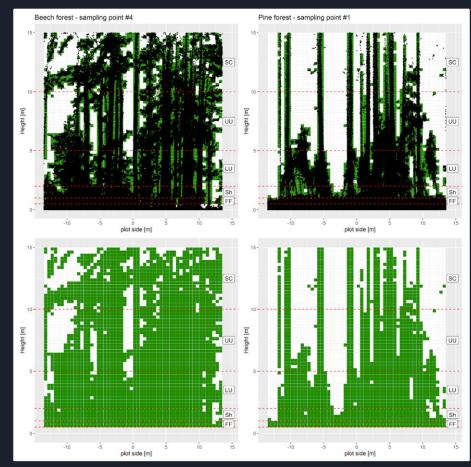
Forest@ - Journal of Silviculture and Forest Ecology, Volume 20, Pages 61-66 (2023) doi: https://doi.org/10.3832/efor4401-020

		Diametro (cm)										
		20	22	24	26	28	30	32	34	36	38	40
	25	0.4704	0.5249	0.5793	0.6338	0.6883	0.7428				0 %	7
	30	0.6630	0.7401	0.8171	0.8941	0.9712	1.0482	1.1253	1.2023			Agri
	35	0.8907	0.9944	1.0981	1.2018	1.3055	1.4092	1.5129	1.6166			
	40	1.1534	1.2879	1.4223	1.5568	1.6912	1.8257	1.9601	2.0946	2.2290		
	45			1.7898	1.9591	2.1284	2.2977	2.4670	2.6363	2.8056	2.9749	
	50			2.2004	2.4087	2.6170	2.8252	3.0335	3.2418	3.4500	3.6583	
	55			2.6543	2.9057	3.1570	3.4083	3.6596	3.9110	4.1623	4.4136	4.6649
	60				3.4500	3.7484	4.0469	4.3454	4.6439	4.9424	5.2409	5.5394
	65					4.3913	4.7411	5.0908	5.4406	5.7903	6.1401	6.4898
	70					5.0856	5.4908	5.8959	6.3010	6.7061	7.1112	7.5163

 $V = \beta_1 + \beta_2 H + \beta_3 dbh^2 + \beta_4 dbh^2 H$

Coefficiente	TLS-2023	Hellrigl-1969
β1	-0.25024 ^{ns}	0.00035
β2	0.0062 ns	0.00161
β3	3.7631***	-1.196417
β4	0.2051***	0.410092

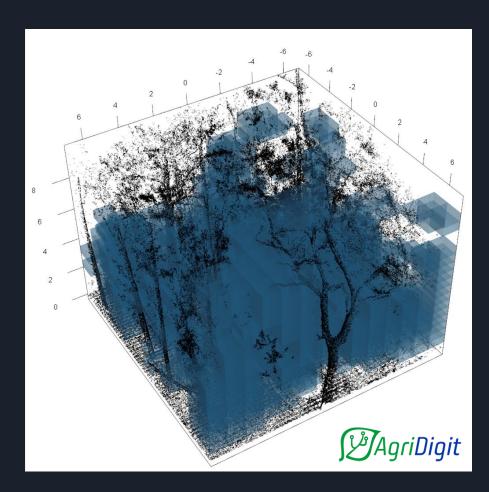

https://foresta.sisef.org/contents/?id=efor4401-020


2.5 5.0 7.5
Volume misurato (mc)

ECOLOGIA FORESTALE

Analisi dettagliata della struttura forestale

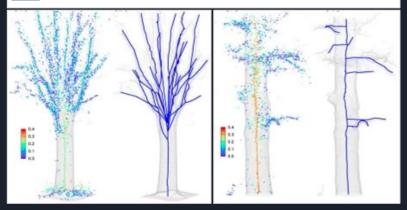
- o sull'intero popolamento
- o su singoli strati



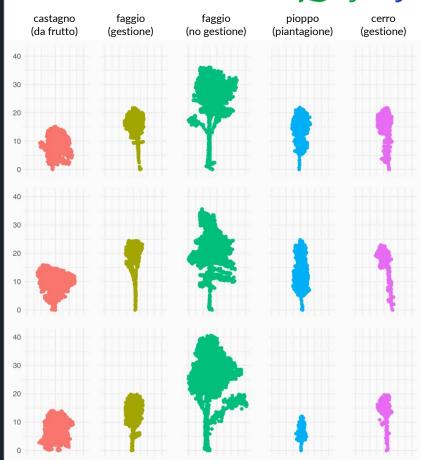
ECOLOGIA FORESTALE

Analisi dettagliata della struttura forestale

https://gitlab.com/Puletti/crossing3dforest


ECOLOGIA FORESTALE

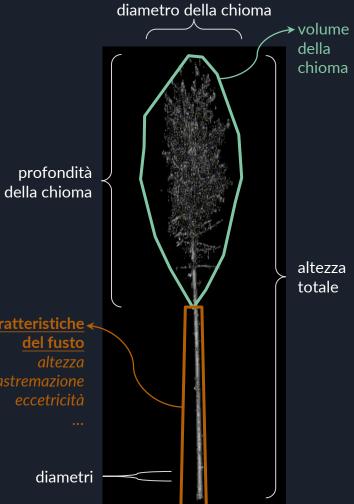
caratterizzazione della struttura architetturale degli alberi

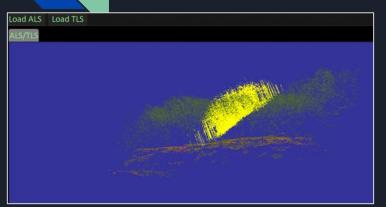

scientific reports

Exploring the mechanical and morphological rationality of tree branch structure based on 3D point cloud analysis and the finite element method

Satoru Tsugawa [™], Kaname Teratsuji, Fumio Okura, Koji Noshita, Masaki Tateno, Jingyao Zhang & Taku Demura

ECOLOGIA FORESTALE


caratterizzazione della struttura architetturale degli alberi traits capturing diversity of tree structure

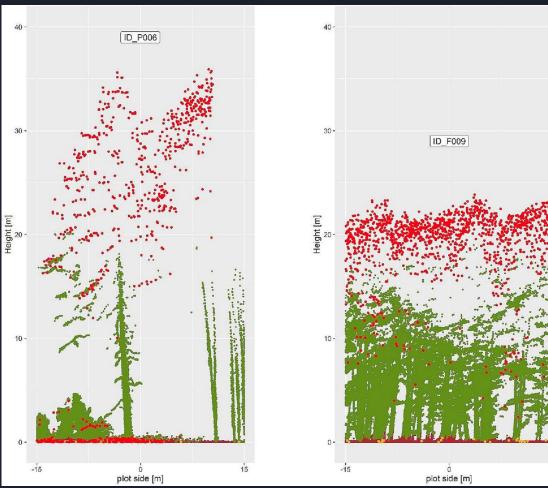

Tree-level Structural Biodiversity Traits (SBTs)

Top-heaviness Aspect ratio Relative Crown Width Crown Area Leaf Area **Crown Density Mass Taper Exponent Path Fraction Crown Asymmetry Branching Angle**

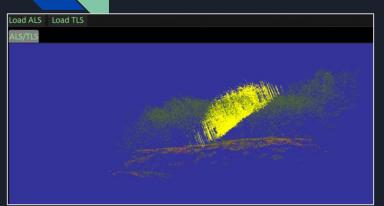
Caratteristiche 👞 del fusto rastremazione eccetricità diametri

ForeSight ®

https://doi.org/10.1016/j.ecoinf.2021.101497


Ecological Informatics

Volume 67, March 2022, 101497

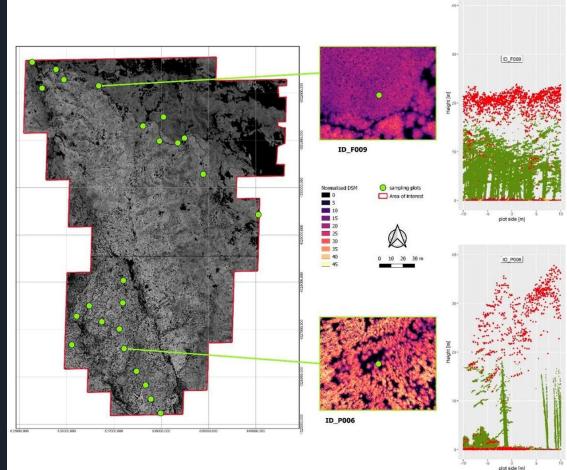


Enhancing wall-to-wall forest structure mapping through detailed co-registration of airborne and terrestrial laser scanning data in Mediterranean forests

Nicola Puletti ^a, Mirko Grotti ^{a b}, Andrea Masini ^c, Andrea Bracci ^c, Carlotta Ferrara ^{a d}

ForeSight ®

https://doi.org/10.1016/j.ecoinf.2021.101497



Ecological Informatics

Volume 67, March 2022, 101497

Enhancing wall-to-wall forest structure mapping through detailed co-registration of airborne and terrestrial laser scanning data in Mediterranean forests


Verso la digitalizzazione (non TLS!)

https://nicolapuletti.shinyapps.io/ForIT_testing_Species/

nicolapuletti.shinyapps.io/ForIT_testing_Species/

TAKE HOME MESSAGES

Si può (e si deve!) tornare a produrre modelli di stima del volume e della biomassa che siano accurati

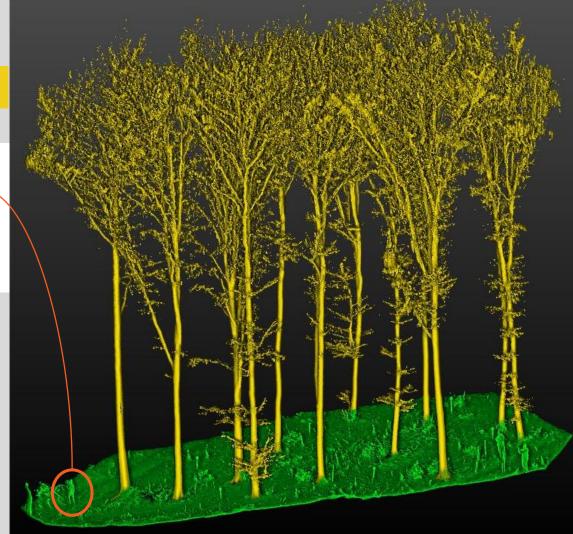
Gli strumenti tecnologici ci sono, il know how pure

Il settore Pubblico (Regioni in primis) insieme al mondo accademico, svolgono un ruolo centrale rispetto a questo compito

I prodotti (modelli/tavole di cubatura) devono essere liberamente fruibili (-> digitalizzazione) secondo principi FAIR

GRAZIE

nicola.puletti@crea.gov.it


www.linkedin.com/in/nicola-puletti-67462140/

https://www.crea.gov.it/en/web/foreste-e-legno/geomatica-forestale

San Michele all'Adige | 15 settembre 2023

