

Rome, 23rd June 2011 Parallel Session

Parallel Session 1

Forests, conservation of biodiversity, landscape protection and public services.

Spatial and temporal response of insect communities to fire disturbance in Mediterranean forests

Mario ELIA, Raffaele LAFORTEZZA, Eustachio TARASCO, Giuseppe COLANGELO, Giovanni SANESI

Mario ELIA¹, PhD student

¹ greenLab, Dipartimento di Scienze Agro-Ambientali e Territoriali, Università degli Studi di Bari "A.Moro", Via Amendola 165/A 70126 Bari ricerca.verdeurbano@agr.uniba.it

MEDITERRANEAN FOREST FIRE

- A number of threats affect the integrity of forest ecosystems and landscapes in the Mediterranean Basin, such as: fragmentation, human exploitation, pest outbreaks, invasion from exotic species, overgrazing and fire (Lafortezza et al. 2008)
- Forest fires can have severe effects on ecological communities by causing direct mortality of animals and plants during the event or by modifying habitat characteristics and species turnover in the post-fire period (Whelan 1995)

THE EFFECTS ON INSECT COMMUNITY

- Insects are good example of animals that can be directly affected by the heat and the smoke during fire and indirectly affected by the changes in forest structure and composition caused by fire (Rainio and Nimelä, 2004)
- The effects of fire on insect community have been studied in grasslands and in forest habitats
- Lack of studies in the Mediterranean landscape.

(Photos by Mike Fidler. Copyright 2008. All rights reserved)

GOAL AND RESEARCH QUESTION

- To understand the dynamics of insects community in response to fire disturbance
- Research question:

MARIO ELIA, PhD student

Does distance from ignition point explain patterns of spatial and temporal variation in insect communities?

MARIO ELIA, PhD student

Altitude from 250 m to 410 m

Area > 600 ha

Area of study within the "Alta Murgia" National Park

ROM/

MARIO ELIA, PhD student

Altitude from 250 m to 410 m

Area > 600 ha *Quercus pubescens* (Willd.) *Quercus coccifera* (L.)

MARIO ELIA, PhD student

Altitude from 250 m to 410 m Area > 600 haQuercus pubescens (Willd.) *Quercus coccifera* (L.) Pistacia lentiscus (L.) *Pistacia terebinthus* (L.) Rosa canina (L.) Crataegus monogyna (Jacq.) Phillyrea spp Rhamnus alaternus (L.) *Erica arborea* (L.) Rubus ulmifolius (Schott.)

Smilax aspera (L.)

MARIO ELIA, PhD student

Summer 2008

Area 260 ha (40%)

Fire event: **crown fire** of **great intensity** and **high energy release**

MARIO ELIA, PhD student

Summer 2008

Area 260 ha (40%)

Fire event: crown fire of great intensity and high energy release

Fire caused: reduction of the canopy tree cover and large open areas covered by herbs and seedlings

OVERVIEW METHODS

OVERVIEW METHODS

MARIO ELIA, PhD student

Pit-fall traps:

- vinegar to attract , kill and preserve insects
- covered by a sloped stone

OVERVIEW METHODS

MARIO ELIA, PhD student

Sampling:

- every week
- plastic container with ethyl alcohol
- identification to the family level

Ŷ

FOREST 2011

	Order	Family	2009	2010	Total
RESUITS	Lepidoptera	Noctuidae	667	204	871
		Nimphalidae	9	5	14
		Total	676	209	885
	Coleoptera	Carabidae	79	98	177
		Staphylinidae	59	236	295
		Curculionidae	3	6	9
• total of 2556 specimens		Coccinellidae	1	—	1
· total of 2550 specimens		Crhysomelidae	4	10	14
• 8 orders and 26 families		Anobidae	2	—	2
· · · · · · · · · · · · · · · · · · ·		Silphidae	—	4	4
 abundance increased 		Scarabaeidae	—	3	3
during the two years from		Tenebrionidae	—	92	92
		Total	148	449	597
1077 (2009) to 1479	Diptera	Muscidae	76	86	162
(2010) individuals		Tabanidae	28	47	75
		Gasterophilidae	33	361	394
_		Cecidomyiidae	39	180	219
		Bibionidae	3	3	6
		Syrphidae	2	—	2
		Tipulidae	—	36	36
•		Total	181	713	894
+37 3 %	Orthoptera	Tettigonidae	6	13	19
		Gryllidae	2	9	11
		Total	8	22	30
	Hymenoptera	Vespidae	54	1	55
		Formicidae	5	81	86
		Ichneumonidae	2	1	3
		Total	61	83	144
	Dermaptera	Forficulidae	—	3	3
	Hemiptera	Pyrrochoridae	2	—	2
	Blattodea	Blattidae	1	—	1
	T	OTAL	1077	1479	2556

FOREST 2011

• **SPATIAL VARIATON**: grouping sampled data based on distance classes (burnt: 0-300 m and unburnt: 300-600 m)

TEMPORAL VARIATON: grouping sampled data based on survey years (2009 and 2010)

SPATIAL VARIATION

not significant differences

between the overall abundance of individuals in distance classes (0-300m and 300-600m)

 significant difference in the two locations for *Coleoptera* in both years

• **not significant differences** for *Lepidoptera*

					Std.	Std.	ANOVA	
Observation	F	actor	N.	Mean	Dev.	Error	F Sig.	
Insect						0 0		
community	2009	0-300	9	55.11	28.733	9.578	0.439 0.517	
		300-600	9	63.67	26.010	8.670	\smile	
	2010	0-300	9	63 33	25 971	8 657	\frown	
	2010	300-600	9	92.89	42.369	14.123	3.183 0.093	
Coloottari	2000	0.200	0	4 2 2	2 202	1 067	\frown	
Coleotten	2009	300-600	9	4.55	9.202 9.427	3 142	5.493 0.032	
		500 000	5		5.127	5.1.12		
	2010	0-300	9	16.78	14.167	4.722	5 204 0.025	
		300-600	9	33.11	15.902	5.301	3.234	
Lepidotteri	2009	0-300	9	41.11	25.157	8.386		
		300-600	9	34.00	23.659	7.886	0.382 0.545	
	2010	0.200	0	12 22	4 6 2 7	1 546		
	2010	300-600	9	10.89	4.637	2.065	0.314 (0.583)	
		300 000	5	10.05	0.104	2.005		

TEMPORAL VARIATION

not significant differences
between the overall
abundance of individuals in
2009 and 2010, both in
distance classes (0-300m;
300-600m)

• significant difference for Lepidoptera and Coleoptera

 however the two orders showed a contrasting pattern in terms of mean abundance

Observation	Ea at		NI		Std.	Std.	AN	OVA
Observation	Faci	.or	N.	Mean	Dev.	Error	F	Sig.
Insect								
community	0-300	2009	9	55.11	28.733	9.578	0.406	0.533
		2010	9	63.33	25.971	8.657		\smile
								\frown
	300-600	2009	9	63.67	26.01	8.67	3.109	0.097
		2010	9	92.89	42.369	14.123		\smile
Coleotteri	0-300	2009	9	4.33	3.202	1.067	6 607	0.021
		2010	9	16.78	14.167	4.722	0.007	0.021
	200 000	2000	9	12.11	9.427	3.142		\frown
	300-600	2009					11.615	0.004
		2010	9	33.11	15.902	5.301		
Lepidotteri	0-300	2009	9	41.11	25.157	8.386	11.39	0.004
		2010	9	12.33	4.637	1.546		
	300-600	2009	9	34	23.659	7.886	8.037	0.012
		2010	9	10.89	6.194	2.065	0.007	

LINEAR REGRESSION

MARIO ELIA, PhD student

• Considering the overall insect community, the resulting models suggest **a positive relationship** between abundance (log-transformed) and distance to fire (m)

Order	Year	Model	R ²
	2009	4.04 + 0.001 * dist	0.24
Insect community	2010	3.85 + 0.001 * dist	0.52
Lepidoptera	2009	4.02 - 0,001340 * dist	0.33
	2010	2.71 - 0,0008546 * dist	0.24
Coleoptera	2009	0.85 + 0.003107 * dist	0.77
	2010	1.91 + 0.003235 * dist	0.74

LINEAR REGRESSION

• *Coleoptera* abundance **raised during the survey period** and was **positively correlated** (2009: R²=0.77; 2010: R²=0.74) with distance from fire ignition.

• *Lepidoptera* abundance decreased during the survey period and was negatively correlated with fire distance (2009: R²=0.33; 2010: R²=0.24).

CONCLUSION

MARIO ELIA, PhD student

• Fire disturbance influences the short-term response of insect abundance with positive or negative effects depending on the ecological traits and habits of *taxa*. Understanding these effects become crucial in highly-modified ecosystems, such as the Mediterranean forests.

• Terrestrial *Coleoptera* were negatively affected by fire especially if we consider the original habitat changes as a consequence of disturbance.

• Fire disturbance is a key factor driving species turnover and natural forest succession in Mediterranean forest ecosystems and landscapes.

• This factor should be considered into forest management plans and practices in order to preserve the integrity of forest ecosystems, thus creating heterogeneous mosaics of different successional stages.

THE EFFECTS ON INSECT COMMUNITY

- Potts et al. (2003) analyzed changes in bee community structure following fire and observed that the abundance of bee declines steadily in the post-fire period.
- Huntzinger (2003) explored the effects of fire management practices on butterfly diversity. In fire-adapted forests, maintenance of landscape heterogeneity seems to support butterfly diversity.
- Campbell et al. (2007) studied the effects of fire on floral visiting insects in oak forests and observed a relationship between insect abundance (or richness) and fire disturbance that reduced overstory trees density and increased the amount of herbaceous plant cover.
- Nunes et al. (2006) characterized ground beetle community in two different Mediterranean ecosystems under prescribed fire treatments and found a decreasing tendency in species abundance and richness in burned plots in Pine stand habitat. In addition, both species abundance and richness were higher in the second year after fire than in the first

MARIO ELIA, PhD student

Summer 2008

Area 260 ha (40%)

Fire event: a **crown fire** of **great intensity** and **high energy release**

Fire caused: **reduction of the canopy tree cover** and **large open areas** covered by herbs and seedlings

The mean number of tree stems per plant was around 4-5 shoots of small diameter and height.