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Climate change
global processes and effects
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Source: Kick the Habit: A UN Guide to Climate Neutrality (2009)
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World Greenhouse gas emissions by sector

Sector End Use/Activity Gas
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All data is for 2000. All calculations are based on CO, equivalents, using 100-year global warming potentials from
the IPCC (1996), based on a total global estimate of 41 755 MtCO, equivalent. Land use change includes both
emissions and absorptions. Dotted lines represent flows of less than 0.1% percent of total GHG emissions.

Source: World Resources Institute, Climate Analysis Indicator Tool (CAIT), Navigating the Numbers: Greenhouse

Gas Data and International Climate Policy, December 2005; Intergovernmental Panel on Climate Change, 1996
(data for 2000).
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Total CO, emissions
from fossil-fuel burning, cement production and gas flaring

Japan

& . Taiwan
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The United Nations Framework Convention on Climate
Change (UNFCCC), adopted in 1992, divides countries
into Annex | (industrialized countries and countries with
economies in transition) and Non-Annex | parties (mostly
developing countries).

»M

Some of them committed to reduce their greenhouse gas
emissions by adopting the Kyoto Protocol (1997).

Country size is proportionate
to national carbon dioxide

I Annex | countries emissions in 2004. ! \"
[ Non-Annex | countries y
E7Y <
~ Cartography: SASI Group, University of Sheffield; Mark Newman, University of Michigan, 2006 (updated in 2008), www.worldmapper.org.
[ Non-parties to the UNFCCC Data source: Gregg Marland, Tom Boden, Bob Andres, Oak Ridge National Laboratory. Please note that data for Norway is inaccurate.
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Reconstructed Temperature
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It is clearly visible that there is an un-normal rise in the average temperature on the
earth 1800 and 2000.
This Abnormal rise in temperature has /is happening because of the so called Green

House Effect.
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Global air temperatures have increased by 0.7 °C during the 20t century and are predicted

to increase by between 1.1 and 6.4 °C during the 21 century, with the greatest increases

expected to occur at more northerly latitudes (Fourth Assessment Report 2007).
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The predicted temperature rise by 2100 is between 1.8 and 4.0°C. This is based on
models representing a variety of emissions scenarios and an uncertainty of one standard
deviation (grey shading). The orange line is a model where greenhouse gas
concentratlons were held constant at year 2000 values (Graphlc IPCC)
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The figures indicate carbon storage and flows, expressed in Gigatonnes
Ca rbon cyCIe (1000 million tonnes) of carbon.

The arrows are proportionate to the volume of carbon.

The figures for the flows express amounts exchanged annually.
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Carbon stored by forests
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“Forests play a vital role in the global carbon cycle, storing roughly half of the
world's terrestrial carbon (Millennium Ecosystem Asessment, 2005). When forests
grow, they withdraw carbon dioxide from the atmosphere and sequester it in trees
and soil. When they are destroyed or degraded, much of this carbon is released,
either immediately if the trees are bumed or more slowly if the organic matter
decays naturally.”

EarthTrends Update, April 2008.

Sources: Atlas Environnement du Monde Diplomatique, 2007; Global Forest Resources
Assessment 2005, United Nations Food and Agriculture Organization (FAO); Hadley climate
research unit, 2007; World Resources Institute (WRI), EarthTrends Environmental Information
Portal, 2008; World Resources Institute, Climate Analysis Indicators Tool, 2008.

Thousand million tonnes
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Carbon inventory up to 2100

501 Carbon stored by vegetation
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“Projections indicate that in the near future, around 2050, the
-50 - capacity for vegetation to absorb carbon will be reached. Global

ing stress and p ites’ p could hereafter lead the
world's forests to a switch from the virtuous role of carbon sinks to
that of carbon emitters." Frédéric Durand, Atlas Environnement du
Monde Diplomatique, 2007.
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This is one of the major criticisms targeting carbon sink

development projects under the Kyoto protocol. Forecast
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Forests will have to adapt to changes in mean climate variables but also to

increased variability. The responses of plant productivity and other ecosystem

processes to climate change are quite variable and increases, decreases, or no

change at all have all been reported.

(Rustad et al. 2001; Pefuelas et al. 2004)

However, there seem to be some regularities such as a greater positive

response of aboveground plant productivity to warming in colder ecosystems.

(Rustad et al. 2001)

Furthermore, there is a large body of observational, satellite, and atmospheric
data regarding plant species and ecosystems that shows clear biological

responses to warming such as extended growing seasons and altitudinal and

northward movement of species’ distributions in both northern and southern,

cold-wet and warm-dry ecosystems.

(Myneni et al. 1997; Peiiuelas et al. 2002; Walther et al. 2002; Parmesan, 2007; Parmesan & Yohe 2003; Pefiuelas &

Boada 2003; Menzel et al. 2006)
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The interest in C exchange modelling reflects the growing attraction in using
models as vehicles to integrate knowledge, research activities, experimental
results, and to test hypothesis, and as the most feasible tools to address
how climate change will affect the process-based forest functionality.

ATMOSPHERE
(prescribed atmospheric datasets)
NCEP CRU05 CO2o
Weather Generator (sub daily) | or | Hourly Meteorological Data CROP DYNAMICS MODULE
gross primary| total net primary
production | respiration| production
canopy physics \./
energy | water aero- ﬁ
balance | balance | dynamics gross photosynthesis
foliage respiration leaf G, N
l LAND SURFACE stem C. N residue production
MODULE . C:N allocation
soil physics rootC, N
energy | water grainC, N C, N removed
vegetation structure

and biomass

/‘\ balance |balance

plant physiology leaf residue ./ )
photosynthesis stomatal stress nitrogen return cr(;pkmtrogen
& leaf respiration |conductance content uptake
BELOWGROUND CARBON & NITROGEN
CYCLING MODULE
temperature (soil gnd air), daily LAI carbon cycling
photosynthesis, GDD decomposition of litter soil
accumulation CROP PHENOLOGY MODULE & soil organic matter | respiration
I planting date | ' ,‘
I emergence I grain fill I nitrogen cycling
SOLUTE TRANSPORT MODULE nitrogen
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[ N Movement - Soil Profile I I senescence | grain drying | mineralization | deposition ixati
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AIM

Simulations of net primary production and transpiration for tree
species as Fagus sylvatica, Quercus cerris and Quercus ilex,
forming widely diffused forest-types in the Mediterranean area,
under two climatic scenarios representing low and high emission
trajectories: B1 (stabilization at 550 ppm atmospheric CO,) and
A1FI (no stabilization of atmospheric CO,) storylines, and for two
temporal frames: 2031-2060 and 2071-2100.

Consequences on primary productivity and distribution patterns
of these tree species will be discussed.
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METHODS
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METHODS

Climate Change
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2031 - 2060

2071 - 2100

Rainfall distributions: future scenarios




Temperature medie annue
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METHODS

Database |N.DE.FO (1995) State Forestry Department
(Investigation of the Decay of Forests 3547 forest plots)

Importance Value (1V) of a species x:

1V, = [(diam., /diam.tot)x100 + (num., /num.tot)x100]

Forest data

Clirmatic data N Matrix of 30840 plots placed
Environmental data at the top of a 3 km x 3 km grid

—> Suitability index made on the basis of Corine Land Cover <

Random Forest statistical approach = current and future potential distribution
of tree species in Italy: Fagus sylvatica, Quercus cerris, Quercus ilex
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METHODS

[PCC - A1FI scenario

Fagus sylvatica
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METHODS

MO.C.A. (Model for Carbon Assessment)
INPUT OUTPUT

Daily Net photosynthesis, Pn

\ 4

Annual Net Productivity,

Quantum Yield = f(Tleaf), Amax

Daily q - 5.
respiration ] NPP = XiPn
. . i =1 to 365
Climatic Ve~ ~"*~= i
Tair, Tavg, Inc BI§ Leaf approach
Radiation, VP
Rainfall, Ozol Thijs approach assumes that canopy carbon

fluxes have the same relative responses to the
environment as any single leaf, and that the

Photoperioc scaling from leaf to canopy is therefore linear. \/
r—otomatal conductance
Gs
Semi-empirical model l
\ 4
! >| Canopy Transpiration

Ozone stomatal Flux
(FO,)
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METHODS
Torre Eddy Covariance

Collelongo vs MO.C.A. ||da | on
12,00 S
I i Torre Eddy Covariance
9,00 - I Collelongo (Aq)
00 L MOCA Torre Eddy Covariance
San s Castelporziano vs MO.C.A.
3,00 - 12,00
0,00 - 9,00 |
NPP tC/ha - Fagus sylvatica M Z‘;Zili‘ic:;;?ﬁz:;)ce
. 6,00
Torre Eddy Covariance 4 MOCA
Roccarespampani vs MO.C.A. 300 - i
12,00 - 0,00 -
NPP tC/ha - Quercus ilex
9,00 i Torre Eddy Covariance
Roccarespampani (VT)
6,00 -
= L4 MOCA
3,00 - 5,28
000 Time Range:
’ 2000 - 2005

NPP tC/ha - Quercus cerris
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NPP distribution maps current and future scenarios
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NPP distribution maps current and future scenarios
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NPP distribution maps current and future scenarios

Projection Net Primary Production
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Quercus ilex
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Fagus sylvatica - NPP vs WUE

IPCC ALFI Scenario 2071-2100
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The difference percentages calculated between 1961-90 and 2071-2100 B1
scenario range from -40% to -25%, showing greater reduction in the pre-Alps
areas (-41%) and northern Apennines (-37%).

Similar values have been calculated for difference between 1961-90 and

2071-2100 A1FI scenario.
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Quercus cerris - NPP vs WUE
|IPCC A1FiScenario 2071-2100

8.00 1.200
7.00 ,\/A\’\,\,\ 1.100
. 6.00 A /\ 1.000
a. LAY Y V\/ >
Z 500 0.900 = —NF;I:
VA tC/hay
400 LN\ . W 0.800
7 . 7 — \WUE
300 |||IIIIIlI|l|H|||||I|II|II’-I-‘I|H|1|I|III 0700 AlFi’ZOBO

N D N 0 D oWy
R SN S, G, L DI N
AT AT DT T T RT N 0

South Latitude North

Quercus cerris shows increasing difference percentages of WUE in the 2017-2100 B1
scenario with respect to the 1961-90 one. The most representative frequency class ranges
between 7% and 15% and it is characterizing the northern and central Apennines, whereas
in the southernmost part of Apennines the difference percentages range from -5% to 3%.

The increasing trend of the difference percentages appears also under the 2071-2100 A1FI
scenario with the most representative frequency class ranging from 25% to 30% and similar
geographical localizations to the B1 climatic scenario.
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Quercus ilex - NPP vs WUE
IPCC ALFi Scenario 2071 - 2100
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The difference percentages calculated for Quercus ilex between 1961-90 and 2071-2100 B1

scenarios range from -8% to -2%, showing greater reduction in the central and southern

Apennines.

However, these differences remain at similar values for the 2071-2100 A1FI scenario,
although they are higher than the difference between the 2071-2100 B1 and 61-90
scenario, ranging between -4% and 6%.
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Q. ilex was the best adapted to drought stress among plant species considered here. The

higher drought resistance of Q. ilex is based on a drought-tolerant water-saving strategy,

due to the morpho-anatomic characteristics of the sclerophyllous leaves and their longer
physiological functioning in time, to low transpiration rates, and to the root system

which is able to adapt and to resist to dehydrated soils.

(Levitt, 1980; Manes et al. 2006

Furthermore, the higher WUE values of Q. ilex under limiting climatic scenarios with
respect to the other two species point out a well adapted functional mechanism to
maintain a positive carbon gain by the activation of “alternative ways” to dissipate the

excess of incoming radiant energy, such as the increase of photorespiration rates.

(Zaragoza-Castells et al. 2008; Rennenberg et al. 2006)
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Q. cerris showed a progressive reduction of NPP and transpiration rates under limiting
scenarios, due to the closure of stomata which are sensitive to change of evaporative
demand between plant and atmosphere.

However, under water stress the stomatal closure could be due to the reduction of the

stem/root hydraulic conductance and to the variation of soil water availability.
(Cochard et al. 1996, 2000; Nardini et al. 1999; Bréda et al. 1993)

An integrated mechanism seems to be involved for the limitation of water loss when
soil water dehydration becomes more intense; high evaporative demand becomes
just as important as the state of dehydration of the soil which directly affects the

root ability to water uptake.
(Manes et al. 2006)

However, WUE values do not increase in the B1 and A1FI scenarios, pointing out a

non conservative water strategy. This could affect the distribution pattern of

Quercus cerris and, in turn, its ability to fix carbon under limiting conditions.
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F. sylvatica, shows different adaptive abilities to counteract the climate change,

adopting a water spender strategy, that is typical for species growing in mesophilous

environments, but it could represent a risk for survival of plant populations when

environmental conditions extremely change.

It is worth to note that remaining surface area under the 2017-2100 A1FI scenario is
65% with respect to 1961-90, pointing out a scarce possibility to shift to higher

altitudes.

(Attorre et al. 2011)

As a consequence, F. sylvatica may be seriously threaten by climate change in Italy,

being also subjected to a strong reduction of NPP.




Final remark

It seems that in a warmer and drier environment, as the one projected for the
Mediterranean areas for the following decades, the performance of the
dominant species, as F. sylvatica and Q. ilex, could be less competitive with
respect to the other more drought and heat resistant species such as the co-
dominant Pistacia latifolia for Q. ilex; as a general rule, the temporal dynamics
of progressive physiological adjustments counteracting the environmental
limiting factors (high temperature and drought increase) seem to play a
fundamental role for determining competitive abilities against other co-
occurring plant species under Mediterranean limiting conditions, affecting thus

the final distribution patterns of plant species.
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